Biomedical Measurement using NIR-light

seminar@Hase
2012/06/28

NIR-wave

The Electromagnetic Spectrum

problem

Rayleigh scattering

Absorption

Signal Intensity is proportional to λ^{-4}

1. Quantitative comparison of contrast and imaging depth of ultrahighresolution optical coherence tomography images in $800-1700 \mathrm{~nm}$ wavelength region. Shutaro Ishida, Norihiko Nishizawa. BIOMEDICAL OPTICS EXPRESS 2823 No. 2 (2012)
2. Dentin micro-architecture using harmonic generation microscopy. R. Elbaum, E. Tal, A.I. Perets, D. Oron, D. Ziskind, Y. Silberberg, H.D. Wagner. journal of dentistry 35150 - 155 (2007)
3. Multiphoton Microscopy of Ex Vivo Corneas after Collagen CrossLinking. Juan M. Bueno,Emilio J. Gualda,Anastasia Giakoumaki,Pablo

Pe'rez-Merino,Susana Marcos, and Pablo Artal. Investigative Ophthalmology \& Visual Science 52 No. 8 (2011)

TD-OCT (time-domain optical coherence tomography)

axial resolution

$$
\delta z=l_{c}=\frac{2 \ln 2}{\pi} \frac{\lambda_{0}^{2}}{\Delta \lambda}
$$

OCT

distribution of reflect signal intensity

Setup

- supercontinuum sources at five wavelengths

800 nm - Ti:sapphire laser (Spectra Physics Mai-Tai HP)
1060 nm - Nd:glass laser (High Q Laser Production)
1300 nm - Er-doped fiber laser (IMRA femtolite B-5)
1550 nm - Er-doped fiber laser (custom-made)
1700 nm - Er-doped fiber laser (IMRA femtolite B-5)

- SC spectra fit in the valleys or flat regions of the water absorption spectrum (except for 1550 nm)

Result (1) : memory card

industrially used materials
\downarrow depend on scattering

Rayleigh scattering theory

Lower slope

Result (2) : pig trachea

$$
\text { pig trachea } \rightarrow \text { depend on absorption and scattering }
$$

The total attenuation coefficient is highest at 800 nm . \square absorption by hemoglobin At longer wavelengths, the total attenuation coefficient increased. absorption by water

The image contrast was much clearer at 1700 nm than at the other wavelengths.

Result (3) : Total attenuation coefficients

- The total attenuation were well-fitted to the λ^{-4} dependence
- The longer-wavelength system is useful

- The enamel and dentine layers
\rightarrow same characteristics as the industrial samples
\rightarrow low absorption by water in human teeth
-The mucosa layer
\rightarrow dependent on the sum of absorption and scattering
- There is a trade-off between imaging contrast and total attenuation coefficient

Summary

- TD-OCT using supercontinuum sources at five wavelengths $\left\{\begin{array}{l}800 \mathrm{~nm} \\ 1060 \mathrm{~nm} \\ 130 \mathrm{~nm} \\ 1550 \mathrm{~nm} \\ 1700 \mathrm{~nm}\end{array}\right.$
-There have been no studies comparing the performance of ultrahighresolution optical coherence tomography (UHR-OCT) for the same sample over a wide wavelength range

This author investigated the wavelength dependence of the images for several different samples and quantitatively compared their optical properties.

Tooth \& dentin

Dentin $\left\{\begin{array}{l}\cdot(\text { dentinal) Tubule } \\ \cdot \text { Peritubular dentin (PTD) } \\ \cdot \text { intertubular dentin(ITD) }\end{array}\right.$

- Tubule is filled with the odontoblast cytoplasmatic fluid
-PTD $\rightarrow 10 \%$ by volume of collagen, mineralized thin cylinder
- ITD contains about 30 volume percent mineralized collagen Type I fibrils,
wrapped around perpendicularly to the tubule long axis.

Setup of HGM

Various locations of the 3D HGM observation points are indicated on the illustration. The results of the 3D reconstruction present tubule density and orientation (angle). Slices A, B and C were facing the pulpal wall (deep dentin in the center, shallow dentin at the periphery) at various root locations. Tubules cut crosswise at different angles. Slice D was cut from the proximal side near the $D E J$.
a Tubule orientation was almost parallel to the surface, thus no 3D reconstruction was possible; the angle was estimated.

THG(third harmonic generation)

$$
\begin{gathered}
P=P_{L}+P_{N L}=\varepsilon_{0} \chi^{(1)} E+\varepsilon_{0} \chi^{(2)} E E+\varepsilon_{0} \chi^{(3)} E E E+\cdots \\
E=E_{0} \sin \omega t \longrightarrow E^{3}=\frac{1}{4} E_{0}^{3}(3 \sin \omega t-\sin 3 \omega t) \longrightarrow \mathrm{THG}
\end{gathered}
$$

reversed \boldsymbol{E} in non-centrosymmetric materials $\longrightarrow \quad$ reversed \boldsymbol{P}

$$
P_{3}=\varepsilon_{0} \chi^{(3)} E E E \quad-P_{3}=\varepsilon_{0} \chi^{(3)}(-E)(-E)(-E)
$$

THG signal is generated by every material.

THG(third harmonic generation)

- THG signal generated before the focus of the excitation beam destructively interferes with the signal generated behind the focal plane.

Guoy phase shift

 phase shift @ before and after focal point

THG will be generated specifically at interfaces between materials of different third order nonlinear susceptibilities

Result (1) : THG, SHG, ESEM

(a) - THG micrograph

(b) - SHG micrograph

(c) - ESEM micrograph

THG

ESEM \rightarrow variation in the mineralization level \rightarrow tubules $=$ black

$$
\begin{aligned}
\text { PTD } & =\text { white } \\
\text { ITD } & =\text { gray }
\end{aligned}
$$

[-The average radius of the lumen is about $0.9 \mu \mathrm{~m}$.

- The spatial resolution of the THG image is about $1 \mu \mathrm{~m}$.
\cdot This means that a feature of about 0.9 mm in radius, like the lumen, will appear as $\sim 1.5 \mu \mathrm{~m}$ in radius.
- The THG image displays bright circular features with an average radius of $1.54 \mu \mathrm{~m}$.

THG signal was created only at the lumen-PTD interface and not at the PTD-ITD interface
SHG \rightarrow They contain much less collagen than the ITD
\rightarrow the tubules and the PTD appear in black

Result (2) :Overlays of SHG and THG images

Maximal SHG signal is obtained when the laser light polarization is parallel to the collagen fibrils.
(a) - Deep root dentin (section A)

(c) - Shallow crown dentin (section C)

(b) - Deep crown dentin (section C)

(d) - Shallow crown dentin (section D)

different region

- The direction of the tubules in relation to the sample surface was found to influence the image quality.

Tubules \perp sample surface

Strong SHG signal
(c) \rightarrow dentin enamel junction (DEJ)

DEJ
Collagen fibrils lie parallel to the tubules long axis

Strong SHG signal

Result (3) :3D reconstruction

THG

- The tubules lie parallel to each other
- The tubules appear to narrow towards the bottom \rightarrow loss of the signal at increased depths SHG

High intensity signal = parallel to the tubules long axis
\rightarrow Such structures may be important with respect to the mechanical properties of the dentir

These structures could not be visualized in the 2D data.

Summary

-This work presents the micro-architecture of tooth dentin reconstructed from harmonic generation micrographs.

- The major advantage over other imaging methods is the ability to locate features within the dentin 3D space.
- The information includes two features: The tubule surfaces, observed using THG signal, and collagen, observed through SHG signal.
- This method may be incorporated in many topics related to the research on dentin, such as the hybridization of dentin with artificial materials, primary dentin development versus secondary dentin, dentin bacterial infection, and crack formation.

Cornea

Cornea

collagen cross-linking (CXL) treatment

CXL treatment

riboflavin-dextran + UVA irradiation

Type of Cornea	Stress at $\mathbf{4} \%\left(10^{\mathbf{3}} \mathbf{P a}\right)$	Stress at $\mathbf{6} \%\left(10^{\mathbf{3}} \mathbf{P a}\right)$	Stress at $\mathbf{8 \%}\left(\mathbf{1 0 ^ { 3 }} \mathbf{~ P a)}\right.$
Porcine			
Untreated	$33.7 \pm 9.3\left(E=0.8 \times 10^{6} \mathrm{~Pa}\right)$	$57.3 \pm 17.3\left(E=1.5 \times 10^{6} \mathrm{~Pa}\right)$	$86.5 \pm 29.9\left(E=2.6 \times 10^{6} \mathrm{~Pa}\right)$
Treated	$55.8 \pm 17.6\left(E=1.4 \times 10^{6} \mathrm{~Pa}\right)$	$98.5 \pm 29.7\left(E=2.7 \times 10^{6} \mathrm{~Pa}\right)$	$151.8 \pm 44.7\left(E=5.3 \times 10^{6} \mathrm{~Pa}\right)$
Human			
Untreated	$34.3 \pm 5.5\left(E=0.8 \times 10^{6} \mathrm{~Pa}\right)$	$53.0 \pm 11.5\left(E=1.3 \times 10^{6} \mathrm{~Pa}\right)$	$79.3 \pm 21.2\left(E=2.2 \times 10^{6} \mathrm{~Pa}\right)$
Treated	$135.7 \pm 61.4\left(E=3.0 \times 10^{6} \mathrm{~Pa}\right)$	$227.3 \pm 95.7\left(E=5.9 \times 10^{6} \mathrm{~Pa}\right)$	$344.7 \pm 141.9\left(E=11.8 \times 10^{6} \mathrm{~Pa}\right)$

Ref) Gregor Wollensak, MD, Eberhard Spoerl, PhD, Theo Seiler, MD. J Cataract Refract Surg 2003; 29:1780 - 1785

Setup

Ref) Juan M. Bueno, PhD, Emilio J. Gualda, PhD, and Pablo Artal, PhD. Cornea 2011;30:692-701

WA control module \rightarrow wavefront sensor + deformable mirror

Hartmann-Shack (HS) wavefront sensor

deformable mirror

Result

SHG images of corneal stroma at different depths captured at 0,2 , and 3 hours in an untreated porcine eye

except for some minor modifications at deeper imaged areas after 3 hours.
untreated porcine cornea (upper panel) and after CXL (lower panels)

- The arrangement of the stromal collagen fibers lying mostly parallel to the corneal surface of untreated corneas is lost with the CXL

Result:Nonlinear (XZ) tomography images of porcine corneas

Result: Effects of riboflavin-dextran instillation in a porcine cornea

- A progressive reduction of the corneal thickness with time is observed

the dehydration effect of the riboflavin solution
before

-Riboflavin is not only responsible for the reduction of corneal thickness, but also for the majority of the changes in the corneal stromal collagen arrangement after CXL.

Summary

- A research adaptive optics nonlinear microscope has been used to visualize the structural changes in the corneal stroma after CXL treatment in bovine and porcine ex vivo eyes.
- This author have shown structural alterations of CXL-treated corneas, which confirms the potential of this imaging modality for the analysis of the effects of this treatment.

Conclusion

- For a biomedical sample, I have to notice about wavelength dependence of the attenuation.
- Tooth is good sample in my study because of effect of absorption of water.
- I have to consider as what kind of tool SHG can be used.

