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Abstract: We investigated the wavelength dependence of imaging depth 
and clearness of structure in ultrahigh-resolution optical coherence 
tomography over a wide wavelength range. We quantitatively compared the 
optical properties of samples using supercontinuum sources at five 
wavelengths, 800 nm, 1060 nm, 1300 nm, 1550 nm, and 1700 nm, with the 
same system architecture. For samples of industrially used homogeneous 
materials with low water absorption, the attenuation coefficients of the 
samples were fitted using Rayleigh scattering theory. We confirmed that the 
systems with the longer-wavelength sources had lower scattering 
coefficients and less dependence on the sample materials. For a biomedical 
sample, we observed wavelength dependence of the attenuation coefficient, 
which can be explained by absorption by water and hemoglobin. 
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1. Introduction 

Optical coherence tomography (OCT) is a non-invasive optical imaging technique for 
micrometer-scale cross-sectional imaging of biological tissue and materials [1–3]. Initially, it 
was a clinically useful diagnostic technique in ophthalmology [4,5]. Since then, OCT 
instrumentation has undergone substantial improvement and is now well-positioned for wide 
adoption in various other clinical and research applications [6]. For instance, this technology 
has been actively used in other clinical applications, such as cardiology [7–9], oncology 
[10,11], visualization of dental structure [12–14], and so on. Although OCT provides many 
advantages in medicine, the low penetration depth is a serious limitation for other applications 
[2]. Because the optical properties of tissue depend on the wavelength used, it is necessary to 
choose the proper wavelength to maximize the light penetration and enhance the image 
contrast at deeper depths. Around the near-infrared wavelength region, the first clinical 
applications of OCT for ophthalmology normally used 800 nm OCT systems. In other 
applications, such as observation of turbid biological tissue samples, 1300 nm OCT systems 
have been shown to have superior penetration depth compared with 800 nm OCT systems 
[12,15–18]. Recently, the long-wavelength window around 1700 nm has attracted attention 
for OCT imaging. Enhanced penetration depth at 1700 nm in skin, 10% intralipid solution, 
and rubber was confirmed by Sharma et al. [19]. On the other hand, the dependence of the 
scattering coefficient on intralipid concentration in water for 1300 nm and 1600 nm systems 
was examined by Kodach et al. [20]. The advantages of using this longer wavelength region 
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are enhanced penetration depth due to lower scattering in tissue and enhanced imaging 
contrast at deeper penetration depths where multiple-scattered photons dominate over ballistic 
photons. However, there have been no studies comparing the performance of ultrahigh-
resolution optical coherence tomography (UHR-OCT) for the same sample over a wide 
wavelength range. 

In this study, we constructed UHR-OCT systems using supercontinuum sources at five 
wavelengths in the range 800–1700 nm. We investigated the wavelength dependence of the 
images for several different samples and quantitatively compared their optical properties. 

2. Experimental setup 

2.1. Supercontinuum sources: Design and output characteristics 

We constructed supercontinuum (SC) sources at wavelengths 800 nm, 1060 nm, 1300 nm, 
1550 nm, and 1700 nm. For the 800 nm source, we used a Kerr-lens mode-locked Ti:sapphire 
laser (Spectra Physics Mai-Tai HP). The chirping in the output pulses from the laser was 
compensated for using a prism pair, and the chirp-compensated pulses were coupled into 
polarization maintaining fiber (PMF) to generate the SC [21]. For the 1060 nm source, we 
used a commercially available, compact, diode-pumped soliton mode-locked femtosecond 
Nd:glass laser (High Q Laser Production). The 100 fs output pulses were coupled into high-
numerical-aperture fiber to generate the SC [22]. For the 1300 nm and 1700 nm sources, we 
used the same laser system, consisting of a passively mode-locked, Er-doped fiber laser 
(IMRA femtolite B-5) that emitted 100 fs ultrashort pulses at a center wavelength of 1.56 μm 
as the seed source, an ultrashort-pulse fiber amplifier pumped by three high-power laser 
diodes at 1480 nm, and a large-mode-area photonic crystal fiber (LMA-PCF:LMA25, 
Thorlabs) to compensate for the chirping of the output high-power ultrashort pulses [23]. For 
the 1300 nm source, high-peak-power ultrashort pulses were coupled into normal-dispersion 
highly nonlinear fiber (ND-HNLF) to generate the SC. A bandpass filter was used at the 
output of the ND-HNLF to generate a Gaussian-like SC. For the 1700 nm source, high-peak-
power ultrashort pulses were coupled into PMF to produce high-power, sech2-shaped soliton 
pulses with a center wavelength of 1700 nm. The output soliton pulses were then coupled into 
ND-HNLF to generate the SC [23]. 

 

Fig. 1. (a) Output spectra of supercontinuum sources together with water absorption spectrum 
and (b) corresponding theoretical longitudinal resolutions at all wavelengths as a function of 
bandwidth. 

For the 1550 nm source, we used a custom-made Er-doped high-power ultrashort-pulse 
mode-locked fiber laser, similar to that used in Ref. [24]. The chirping in the output pulses 
from this laser was compensated for using LMA-PCF (LMA35, Thorlabs), and the chirp-
compensated pulses were coupled into ND-HNLF to produce the SC. 
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Figure 1(a) shows the output spectra of the SC sources together with the spectrum for 
absorption by water. The SC spectra fit in the valleys or flat regions of the water absorption 
spectrum, except for the spectrum of the 1550 nm SC. The spectral bandwidths of the SC 
sources were 121 nm at 800 nm, 101 nm at 1060 nm, 223 nm at 1300 nm, 159 nm at 1550 nm, 
and 400 nm at 1700 nm. The average output powers were 30.0 mW, 31.0 mW, 12.7 mW, 19.4 
mW, and 30.0 mW, respectively. Figure 1(b) shows the theoretical longitudinal resolution at 
each wavelength, estimated from 2ln 2/π (λc

2/Δλ), where λc is the center wavelength, and Δλ is 
the bandwidth of the light source in the case of a Gaussian-shaped spectrum. The circles in 
Fig. 1(b) show the estimated longitudinal resolutions in air for the generated supercontinuum 
spectra. 

2.2. OCT setup and system characteristics 

We constructed a time-domain (TD) OCT system for all wavelengths used in this study. The 
set-up is depicted schematically in Fig. 2. The light from each SC source was coupled into a 
Michelson interferometer based on three broadband optical fiber couplers. The input beam 
was divided into signal and reference beams at these couplers. The signal beam was 
introduced into the sample arm containing a two-dimensional scanning system formed of a 
galvanometer mirror pair. To maintain the longitudinal resolution, the dispersion in the two 
arms of the interferometer was carefully balanced by using glass plates (BK7, fused silica, and 
so on) and an achromatic lens. The power of each SC source was 2.1–3.2 mW at the sample. 
Inline polarization controllers were used to adjust the polarization state of each beam. The 
reference arm was scanned by using a corner cube prism mounted on a galvanometer. The 
reference and signal beams were then combined with Coupler 1 in Fig. 2, and the interference 
signals were detected at a balanced detection system to cancel out the average noise. 

 
Fig. 2. Experimental setup for time-domain optical coherence tomography. 

Figure 3 shows the interference signals for all wavelengths. Since the spectral shape was 
nearly Gaussian, the magnitude of the sidelobes was very small on a linear scale. The 
observed longitudinal resolutions were 3.3–7.0 μm in air and 2.4–5.0 μm in tissue. The 
longitudinal resolutions in tissue at all wavelengths were under 5.0 μm, demonstrating that 
ultrahigh resolution was achieved. 

We used a suitable balanced detector for each wavelength: a Si PIN photodiode-based 
balanced detector (PDB150A, Thorlabs) for 800 nm, an InGaAs PIN photodiode-based 
balanced detector (PDB150C, Thorlabs) for 1060 nm, 1300 nm, and 1550 nm, and an 
extended InGaAs-based balanced detector (PDA10D, Thorlabs) for 1700 nm. The detected 
interference signal was bandpass filtered, logarithmically demodulated, low-pass filtered, and 
acquired by a computer. We confirmed higher than 95 dB sensitivity at all wavelengths. 

In Figs. 3(c, e), the interference signals have the sidelobes caused by the non-ideal spectral 
shape of SC sources shown in Fig. 1(a). In the same way, 1500 nm UHR-OCT system has 
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sidelobes in the interference signal at longer distance. They cause the small artifact in OCT 
images especially at the sample surface. 

 
Fig. 3. (a–e) Interference signals with mirror as sample at (a) 800 nm, (b) 1060 nm, (c) 1300 
nm, (d) 1550 nm, and (e) 1700 nm UHR-OCT in air. (f) Observed longitudinal resolutions 
(circles) together with theoretical predictions (solid lines). 

2.3. Phantom materials 

We imaged several phantom and biological samples at all wavelengths. The tested samples 
were a plastic cover of a semiconductor memory card, made of polycarbonate (PC), an eraser, 
made of polyvinyl chloride (PVC), a magnet, made of chlorinated polyethylene (CPE) and 
anisotropic ferrite, a human tooth, and a pig trachea specimen. These samples were chosen to 
evaluate the dependence of absorption by water in typical industrially used materials and 
biological samples examined with UHR-OCT. For direct comparison, the OCT systems we 
constructed had almost the same architecture for all wavelengths. To reduce unwanted errors 
in estimating the attenuation coefficients, we adjusted the lateral resolution to 20.0 μm for all 
wavelengths. The focal point was set at the top of the sample. Figure 4 shows the spatial beam 
profiles at the sample surface for all wavelengths. The lateral resolutions at the sample surface 
were 17.6 μm at 800 nm, 19.6 μm at 1060 nm, 19.4 μm at 1300 nm, 20.6 μm at 1550 nm, and 
21.4 μm at 1700 nm. 

 

Fig. 4. Observed spatial beam profiles at the top of surface of the sample at all wavelengths. 
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2.4. Numerical analysis and measurement setting 

We used the single-backscattering model to determine the total attenuation coefficient μt, 
which is the sum of the absorption and the scattering coefficient [25]. The principal 
assumption is that the direction of a wave with power P0 incident upon the sample is reversed 
only once by a single backscattering event. While the wave travels in the sample, attenuation 
occurs along the path of the wave before and after it is backscattered. From this model, the 
backscattered power returning from depth z can be expressed as 

 ( )
0

( ) ( ) exp 2b t
P z K A z z
P

µ µ≈ −   (1) 

where K is a constant that depends on the source coherence function, A(z) is the beam 
divergence function, and μb is the backscattering coefficient. Because the magnitude of the 
OCT signal is proportional to the amplitude of the field returning from the sample, the OCT 
signal on a dB scale is given by 

 ( )
0

( )10 log 20 log 10 exp ( ) .t b
P z e z K A z
P

µ µ ⋅ ≈ − ⋅ ⋅ + ⋅ 
 

 (2) 

From these equations, we used the maximum likelihood estimation to extract the total 
attenuation coefficient by finding the condition that minimizes the quantity χ2 given by [26] 

 
( ) 2
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: ....N
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χ
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− 
≡  

 
∑ .  (3) 

We repeatedly measured each sample, and extracted the attenuation coefficient from the 
average of A-line scans to achieve a high degree of precision. In addition, the OCT signals 
between the surface and several tens of micrometers below the surface were eliminated to 
avoid the artifact caused by non-ideal spectral shape of light source. In the same way, the 
OCT signals between the tail or the changing point of slope and several tens of micrometers 
above there were eliminated. 

3. Results 

3.1. Plastic cover 

Figure 5(a) shows a photograph of a memory card with a plastic cover. From the OCT images 
at 800 nm in Fig. 5(b) and 1700 nm in Fig. 5(c), we confirmed a deeper penetration depth in 
the longer wavelength region. Figures 5(d–h) show the results of averaged A-line scans from 
OCT signals measured at 800 nm, 1060 nm, 1300 nm, 1550 nm, and 1700 nm for quantitative 
comparison. The total attenuation coefficients were 4.8 mm−1 at 800 nm, 4.6 mm−1 at 1060 
nm, 4.8 mm−1 at 1300 nm, 2.6 mm−1 at 1550 nm, and 2.8 mm−1 at 1700 nm. From these 
results, we confirmed lower attenuation coefficients in longer wavelength regions, 
demonstrating the usefulness of our system for measuring inside plastic samples. The OCT 
signal had a peak intensity of almost 20 dB at the surface of the sample, and then the reflected 
power decreased monotonically in all wavelength regions. The longer the center wavelength 
was, the lower the slope of the OCT signal intensity versus depth was. 

3.2. Eraser 

Figure 6(a) show a photograph of an eraser. Figures 6(b–f) show the results of averaged A-
line scans from OCT signals measured at 800 nm, 1060 nm, 1300 nm, 1550 nm, and 1700 nm 
for quantitative comparison. The total attenuation coefficients were 10.1 mm−1 at 800 nm, 8.0 
mm−1 at 1060 nm, 6.6 mm−1 at 1300 nm, 6.7 mm−1 at 1550 nm, and 6.3 mm−1 at 1700 nm. For  
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Fig. 5. (a) Photograph of semiconductor memory card with plastic cover. (b, c) OCT images 
obtained at (b) 0.8 μm and (c) 1.7 μm. (d–h) Depth profiles averaged over 250 A-line scans and 
more than 50 iterative measurements at (d) 800 nm, (e) 1060 nm, (f) 1300 nm, (g) 1550 nm, 
and (h) 1700 nm. The slopes shown by the red lines were used to determine the total 
attenuation coefficients. 

 
Fig. 6. (a) Photograph of eraser. (b–f) Depth profiles averaged over 250 A-lines and more than 
50 iterative measurements at (b) 800 nm, (c) 1060 nm, (d) 1300 nm, (e) 1550 nm, and (f) 1700 
nm. The slopes shown by the red lines were used to determine the total attenuation coefficients. 

1550 nm, we estimated the attenuation coefficient from the slope obtained by disregarding 
artifacts due to the properties of the light source, as indicate by the dashed line in Fig. 6(e). 
From these results, similar to the results in Section 3.1, we confirmed lower attenuation 
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coefficient in longer wavelength regions, demonstrating the usefulness of the longer 
wavelength systems for performing measurement through rubber type materials. 

3.3. Magnet 

Figure 7(a) shows a photograph of the magnet. Figures 7 (b–f) show the results of averaged 
A-line scans from OCT signals measured at 800 nm, 1060 nm, 1300 nm, 1550 nm, and 1700 
nm for quantitative comparison. The total attenuation coefficients were 24.0 mm−1 at 800 nm, 
22.3 mm−1 at 1060 nm, 13.9 mm−1 at 1300 nm, 9.6 mm−1 at 1550 nm, and 6.0 mm−1 at 1700 
nm. From these results, we confirmed the strong wavelength dependence of the attenuation 
coefficient, which is different from the other materials in Figs. 5 and 6. For 1550 nm, similar 
to the results in Section 3.2, we extracted the slope of the OCT signal by disregarding artifacts 
due to the properties of the light source, as indicated by the dashed line in Fig. 7(e). 

 
Fig. 7. (a) Photograph of magnet. (b–f) Depth profiles averaged over 250 A-lines and more 
than 50 iterative measurements at (b) 800 nm, (c) 1060 nm, (d) 1300 nm, (e) 1550 nm, and (f) 
1700 nm. The slopes shown by the red lines were used to determine the total attenuation 
coefficients. 

3.4 .Total attenuation coefficients of low-water-absorption industrially used materials 

Table 1 shows the total attenuation coefficients of the three samples of industrially used 
materials (plastic cover, eraser, and magnet), which were obtained from the UHR-OCT depth 
profiles. Figure 8 shows the wavelength dependence of the total attenuation coefficients of 
these samples. The ranges of variation of the attenuation coefficients over all wavelengths 
were 2.0 dB/mm for the plastic cover, 3.8 dB/mm for the eraser, and 18.0 dB/mm for the 
magnet. The magnet showed much larger wavelength dependence. 

Table 1. Comparison of total attenuation coefficients of industrially used materials 

Wavelength 
Plastic cover Eraser Magnet Range 

μt (mm−1) μt (mm−1) μt (mm−1) Max – Min (mm−1) 
800 nm 4.8 10.1 24.0 19.2 
1060 nm 4.6 8.0 22.3 17.7 
1300 nm 4.7 6.6 13.9 9.2 
1550 nm 2.6 6.7 9.6 7.0 
1700 nm 2.8 6.3 6.0 3.2 

Max – Min 2.0 3.8 18.0   
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Fig. 8. Wavelength dependence of total attenuation coefficient for industrially used materials 

The longer the wavelength was, the smaller the range of variation of the total attenuation 
coefficient was. From Table 1 and Fig. 8, we confirmed the effectiveness of longer-
wavelength UHR-OCT for samples showing low absorption by water. Moreover, there was 
less dependence of the total attenuation coefficient on the sample material at longer 
wavelengths. 

3.5. Human baby tooth 

Next, we examined some biological samples. Figure 9(a) shows an image of a human baby 
tooth. We measured the OCT signal at the red line in Fig. 9(a). Figures 9(b–f) show UHR-
OCT images and corresponding A-line scans of the OCT signals at the red dashed line in each 
OCT image. The OCT signals in Figs. 9(b–f) have more than two slopes. The red line shows 
the slope at the enamel layer, and the blue line shows the slope at the dentine layer. Figure 
9(g) shows the wavelength dependence of the total attenuation coefficients of the enamel and 
dentine layers. From 800 nm to 1550 nm, the total attenuation coefficient of the enamel layer 
decreased monotonically. The variation of the total attenuation coefficient of the dentine layer 
was 0.5 dB/mm, which is much less than that of the enamel layer, namely, 4.6 dB/mm. Thus, 
the enamel layer had stronger wavelength dependence than the dentine layer. Figures 9(c, d, f) 
reveal the existence of signals under the dentine layer. The corresponding total attenuation 
coefficient shown by en2 in Fig. 9(f) was 3.2 dB/mm, which is larger than the total attenuation 
coefficient of the dentine layer. It is considered that this signal originated from the enamel 
layer at the bottom side of the thin human baby tooth. 

From these results and from comparison with the results of the industrially used materials 
described above, we confirmed the lower absorption by water in the human tooth sample and 
greater imaging depth with high contrast at a wavelength of 1700 nm. 

3.6. Pig trachea 

Figure 10(a) shows a photograph of the pig trachea sample. Figures 10(b–f) show the UHR-
OCT images and A-line scans of the OCT signals at the red dashed line in each OCT image 
used for quantitative comparison. In Figs. 10(b–f), we can distinguish the epithelium, mucosa, 
and cartilage in the sample. The solid red line shows the slope at the mucosa layer. Figure 
10(g) shows the wavelength dependence of the attenuation coefficient of the mucosa in the 
pig trachea sample. In Fig. 10(g), the total attenuation coefficient is highest at 800 nm, due to 
absorption by hemoglobin in the mucosa layer. At longer wavelengths, 1060 nm and above, 
the total attenuation coefficient increased. This was due to the influence of absorption by 
water around 1400 nm and above 1800 nm. 

From these results, we confirmed the influence of absorption by water and hemoglobin on 
the total attenuation coefficient in the mucosa of the pig trachea sample. The total attenuation 
coefficient of the mucosa was smallest at 1060 nm. On the other hand, the image contrast  
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Fig. 9. (a) Photograph of human tooth sample. (b–f) OCT images at red line in (a) and depth 
profiles obtained at red dashed line in each of the OCT images at (b) 800 nm, (c) 1060 nm, (d) 
1300 nm, (e) 1550 nm, and (f) 1700 nm. The slopes shown by the red and blue solid lines were 
used to determine the total attenuation coefficients. (g) Wavelength dependence of total 
attenuation coefficients of enamel and dentine layers in the sample. Important features inside 
the sample can be distinguished, such as the enamel layer (en) and the dentin layer (d). 

between the epithelium, mucosa, and cartilage was much clearer at 1700 nm than at the other 
wavelengths. Figure 10(h) shows a reconstructed 3D image of the pig trachea at 1700 nm. 
Reconstructed 3D images at 800 nm and 1700 nm are also shown as movies in Media 1 and 
Media 2. We can see the difference in image contrast and penetration depth in the two movies. 
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Fig. 10 (a) Photograph of pig trachea sample. (b–f) OCT images and depth profiles at the red 
dashed line in each OCT image at (b) 800 nm, (c) 1060 nm, (d) 1300 nm, (e) 1550 nm and (f) 
1700 nm . The slopes shown by the solid red lines were used to determine the total attenuation 
coefficients. (g) Wavelength dependence of total attenuation coefficients of mucosa in trachea. 
(h) Three-dimensional (3D) image at 1700 nm (Media 1). A 3D image at 800 nm is also shown 
as a movie in Media 2. Important features inside the sample can be distinguished, such as the 
epithelium layer (ep), the mucosa layer (m), and cartilage (ca). 

4. Discussion 

We observed wavelength dependence of the total attenuation coefficients of various samples 
in UHR-OCT. Figure 11(a) shows the total attenuation coefficients of the industrially used 
homogeneous materials. The wavelength dependence of the magnet was much stronger than  
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Fig. 11. Total attenuation coefficients of (a) industrially used materials and (b) biomedical 
samples. The absorption coefficients of water [27] and hemoglobin [28] are shown in blue and 
red lines with arbitrary unit. 

those of the other samples. The dashed line in Fig. 11(a) shows the fitted curve obtained from 
Rayleigh scattering theory. The total attenuation coefficients were fitted to this curve by the 
least-squares method. They were proportional to λ−4, where λ is the center wavelength of the 
light source. The wavelength dependence of the total attenuation coefficients of the plastic 
cover and eraser were well-fitted to the λ−4 dependence. It is considered that the slight 
different behavior of attenuation coefficient of these two materials is caused by the material 
properties such as hardness, molecular weight, and density. However, the fitness for the 
magnet was modest. The variation of the total attenuation coefficients at longer wavelengths 
for the industrially used homogeneous samples was much smaller than the others, in terms of 
the sample dependence shown in Fig. 11(a). Therefore, it is considered that a longer-
wavelength system is useful for examining many kinds of industrially used materials with 
only a single apparatus. For more precise analysis of optical properties in the materials, it is 
necessary to compensate the chromatic dispersion inside the material, especially in the shorter 
wavelength region. In addition, it is expected that the phantoms made of polystyrene sphere in 
several liquid conditions are also useful to decouple the contribution of the absorption and 
scattering coefficients. In the human tooth sample, the enamel and dentine layers showed 
almost the same characteristics as the industrial samples. This is considered to be because of 
low absorption by water in human teeth. The total attenuation coefficient of the mucosa layer 
in the pig trachea sample, depicted by the circles in Fig. 11(b), was dependent on the sum of 
absorption and scattering. The total attenuation coefficient at 800 nm was affected by 
absorption by hemoglobin, which is described by the red line in Fig. 11(b). On the other hand, 
the total attenuation coefficient at wavelengths longer than 1060 nm was affected by 
absorption by water, which resulted in a higher total attenuation coefficient as the wavelength 
increased. From the imaging results of the pig trachea in Fig. 10(b–f), the OCT images at 800 
nm and 1700 nm had clear boundaries between the epithelium, mucosa, and cartilage. On the 
other hand, the imaging contrast at 1060 nm, 1300 nm, and 1550 nm did not show any 
dependence on wavelength. From these results, in biomedical measurement, it is considered 
that there is a trade-off between imaging contrast and total attenuation coefficient, which leads 
to the greatest possible penetration depth. In addition, it is considered that the evaluation of 
the wavelength dependence of OCT imaging of skin and blood is effective to investigate the 
contribution of water and hemoglobin absorptions. 

5. Conclusion 

We investigated the wavelength dependence of the optical properties of samples with 
ultrahigh resolution optical coherence tomography (UHR-OCT) at wavelengths in the range 
0.8–1.7 μm. We constructed supercontinuum sources in five wavelength regions and 
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corresponding optical coherence tomography systems designed to match the broadband 
characteristics of each supercontinuum source. With these systems, we compared the total 
attenuation coefficients, which are mainly the sum of the scattering coefficient and absorption 
of the samples. In the samples of industrially used homogeneous materials showing low 
absorption by water, the total attenuation coefficients of the samples were fitted by Rayleigh 
scattering theory. The longer-wavelength systems had low scattering coefficient, leading to 
high-penetration-depth imaging and less dependence of the total attenuation coefficient on the 
sample material. One of the biological samples, the human tooth, which had low absorption 
by water, showed nearly the same total attenuation coefficient and penetration depth behavior. 
On the other hand, in the pig trachea sample, which showed absorption by water and 
hemoglobin, the total attenuation coefficient depended on the wavelength, due to absorption 
and scattering in the mucosa layer, and the imaging contrast at 800 nm and 1700 nm was 
much higher than at the other wavelengths. 
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