ERATE MINOSHIMA Intelligent Optical Synthesizer

19p-C6-15

2014/09/19@北海道大学

第75回応用物理学会秋季学術講演会

アダプティブ・サンンプリング式 デュアルTHzコム分光法

市川 竜嗣¹, ○<u>謝 宜達^{1,2}</u>, 稲場 肇^{2,3}, 美濃島 薫^{2,4}, 安井 武史^{1,2}

徳島大¹, JST-ERATO², 産総研³, 電通大⁴

ERATE MINOSHIMA Intelligent Optical Synthesizer

光コムとTHzコム

非同期光サンプリング式THz-TDS (ASOPS-THz-TDS) THzパルスとプローブパルスの重なる タイミングが各パルス毎に自動的にシフト

従来のASOPS-THz-TDSを用いた場合、 モード同期周波数の安定化制御が必要

 ◆
 もし、フリーランニング・レーザーを用いる ことができれば、その利用範囲を大きく拡大 することが可能
 ●
 しかし、タイミング・ジッターの影響で、

時間軸の線形性が保てなくなる

MINOSHIMA Intelligent Optical Synthesizer ERATO

Ref) T. Ideguchi, Nat. Comm., 5, 3375 (2014).

コム間ビート信号の抽出

Ref) Shuko Yokoyama et al., Optics Express, Vol. 16, Issue 17, pp. 13052-13061 (2008)

MINOSHIMA Intelligent Optical Synthesizer

Pass length : 400mm, diameter : 50mm 9

 $f_{rep1}\&f_{rep2}$ フリーランニング

コンスタント・クロック f_{rep1}&f_{rep2}独立制御 (従来法)

アダプティブ・クロック f_{rep1}&f_{rep2}フリーランニング (提案手法)

ERATO (INFORMALING Intelligent Optical Synthesizer

ST-ERATO Research Project

まとめ

- アダプティブ・サンプリング法を適用する
 ことにより、フリーランニング・レーザー
 でもデュアルTHzコム分光法可能である
- アセトニトリル・ガスによる等間隔な吸収 線を観測し、従来法と同等な性能を有する と考えられる

ERATO MINOSHIMA Intelligent Optical Synthesizer

タイミング・ジッターの影響

エアロゾル(線香煙)透過測定

可視光レーザー:632nm THz計測条件:計測時間:1s、時間窓:1ns、差周波:50Hz

ST-ERATO Research Project

Ref) T. Yasui, et al, Appl. Phys. Lett., 88, 241104 (2006).

Ref) Y. -D. Hsieh, et al, Sci. Rep., 4, 3816 (2014)

18