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Dual-comb spectroscopy is extended to the visible spectral range with two short-pulse frequency-doubled free-
running ytterbium-doped fiber lasers. When the spectrum is shifted to other domains by nonlinear frequency
conversion, tracking the relative fluctuations of the femtosecond oscillators at their fundamental wavelength auto-
matically produces the correction signal needed for the recording of distortion-free spectra. The dense rovibronic
spectrum of iodine around 19; 240 cm−1 is recorded within 12 ms at Doppler-limited resolution. © 2012 Optical
Society of America
OCIS codes: 300.6300, 300.6390, 300.6550, 120.6200, 140.4050, 120.3180.

Laser frequency combs have revolutionized [1] the way
we measure the frequency of light and are becoming
essential for many new applications that rely on the pre-
cise control of light waves. A laser frequency comb has a
broad spectrum, generally produced by a mode-locked
femtosecond (fs) laser, which consists of several hundreds
of thousands of perfectly evenly spaced spectral lines.
Molecular spectroscopy is one of the areas of science and
technology where these recent light sources may be taken
advantage of. In particular, dual-comb spectroscopy [2–8]
offers intriguing opportunities, as this broad spectral band-
width multiplex technique has demonstrated dramatically
reduced acquisition rates, improved resolution, and sensi-
tivity when compared to the most commonly used tool for
broadband molecular spectroscopy, the Michelson-based
Fourier transform interferometer [9]. Dual-comb spectro-
scopy is a time-domain interferometric technique, in which
the pulse train of the interrogating comb excites the ab-
sorbing sample at regular time intervals. A second pulse
train of different repetition frequency interferometrically
samples the transient response or free induction decay of
the medium, akin to an optical sampling oscilloscope. A
Fourier transform reveals the spectrum.
The most convincing demonstrations of dual-comb

spectroscopy have been undertaken in the near-infrared
range [3,4,6,7], where frequency-comb oscillators are
conveniently available. However, most of molecular tran-
sitions in this region are due to weak overtone bands. The
visible region, where many molecules undergo strong
rovibronic transitions, is complementary to the “molecu-
lar fingerprint” midinfrared range. Moreover, advanced
photonic technologies are readily available in this do-
main. However, dual-comb spectroscopy has not been
implemented yet in the visible and ultraviolet regions.
In this Letter, we report on real-time dual-comb spectro-

scopy in the visible spectral region. A new scheme that
makes it possible to record distortion-free dual-comb
spectra with frequency-doubled free-running fs ytterbium-
doped fiber laser systems is implemented. Phase-lock
electronics or a posteriori corrections are not required.
We investigate the dense rovibronic spectrum of iodine
in the 19; 240 cm−1 region at Doppler-limited resolution.
Figure 1 sketches the experimental setup. Two free-

running Yb-doped fiber commercial mode-locked

oscillators have a central wavelength of 9620 cm−1. They
emit pulses of about 100 fs with an average power of
60 mW. Their repetition frequencies are about 100 MHz,
and they differ by 6.7 Hz. No active stabilization is used
and the repetition frequencies are adjusted manually by
tuning a piezo-electric actuator and a stepper motor
changing the laser cavity lengths. The repetition frequen-
cies drift quasi-linearly as a function of time with a slope
of about 0.02 Hz∕s. For the spectroscopy setup, the two
laser beams are frequency doubled with 2 mm thick β-bar-
ium borate (BBO) crystals to generate a spectrum cen-
tered around 19; 360 cm−1. The average power of the
frequency-doubled pulses is 3 mW. The beams are com-
bined on a beammixer and interrogate a 90 cm long iodine
cell at room temperature (vapor pressure: ∼40 Pa). Their
time-domain interference pattern is detected by a 250 MHz
bandwidth Si avalanche photodiode, filtered, amplified,
and digitized by a 16 bit data-acquisition board synchro-
nized by an external clock, called an adaptive clock [3].

Let us first discuss the need for such an external clock
to synchronize the digitization. A well-known conse-
quence of the use of Fourier transformation to sort out
the various frequencies of the spectrum is the necessity
for sampling the time-domain interferogram within inter-
ferometric precision. Otherwise severe artifacts, called
phase errors, can seriously degrade the spectrum. With
Michelson-based Fourier transform spectrometers, such

Fig. 1. (Color online) Experimental setup. Two free-running
fs Yb-doped fiber lasers with slightly different repetition frequen-
cies are frequency doubled with second-harmonic-generation
(SHG) crystals. The green beams are combined and probe the
iodine sample. Their time-domain interference signal is recorded
with a fast photodetector (PD) and digitized with the adaptive
clock, described in Fig. 2.
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instrumental effects have been studied and successfully
minimized for a long time [10]. In dual-comb spectro-
scopy, new difficulties arise. First, the time intervals
between interfering comb pulses can be subject to timing
fluctuations that have to be kept lower than 10 attose-
conds (relative fluctuations: 10−9). Second, the difference
of the slippage of the carrier phase relative to the pulse
envelope due to laser dispersion between the two combs
should be also controlled within 10−9. With the digitiza-
tion of the interferogram at a fast sampling rate (e.g.,
100 MHz) and the recording time of such interferograms
with Doppler-limited resolution on a millisecond scale,
very fast servo-control loops would be required together
with high-accuracy sampling clocks. Successful solutions
to circumvent these issues involve stabilizing the combs
against continuous-wave (cw) lasers with a linewidth of
the order of 1 Hz and acquiring the interferogram over
several seconds [2,7] or monitoring the relative fluctua-
tions of the combs in order to perform computer-based
a posteriori corrections [6]. Both approaches have,
however, concentrated on measurements with long aver-
aging times for signal-to-noise ratio improvement. This
procedure might fade out phase errors and does not
explore the real-time advantage of dual-comb spectro-
scopy. We have recently developed a simple technique
[3] of adaptive dual-comb spectroscopy with free-running
lasers and very short acquisition times and have demon-
strated it with 1.5 μm erbium-doped fiber lasers. Here
we extend this technique to frequency-doubled laser
systems.
Figure 2 displays the details of the adaptive-clock

signal generation, represented by a box in Fig. 1. Each of
the two fs ytterbium-doped fiber lasers beats with the
same free-running narrow-linewidth cw ytterbium-doped
fiber laser that emits at 9618 cm−1. The beat notes be-
tween the fs and cw lasers isolate, through proper elec-
tronic filtering, a single comb line of each comb. The two
beating signals are then electronically mixed and the
contribution of the cw laser vanishes. A signal at the
frequency f 1 − f 2 ! 10.5 MHz is thus produced. The tim-
ing and phase fluctuations between the interfering combs

are directly imprinted onto this beating signal. Interfer-
ence between pairs of optical comb lines image the
optical absorption spectrum into the radio frequency
region, ideally to cover the full free-spectral range, which
is half of the repetition frequency of the fs lasers, i.e.,
50 MHz. Therefore, we frequency multiply eightfold the
10.5 MHz signal to avoid aliasing. The resulting f clk !
84 MHz signal provides the adaptive-clock signal that
triggers the data acquisition. Not shown in the figures,
the delays mostly induced by the various electronic com-
ponents are compensated for. An electronic delay line is
therefore inserted after the detector signal in the inter-
ferometric spectroscopy setup and after one of the opti-
cal beat detection units in an adaptive-clock generation
device.

A portion of 15 cm−1 of the absorption spectrum of
iodine around 19; 240 cm−1 is shown in Fig. 3. The full

Fig. 2. (Color online) Adaptive-clock generation scheme.
Each fs oscillator beats with a cw free-running laser with a fre-
quency f cw in a beat detection unit (BDU) to isolate a single
mode of each fs laser with a frequency of f 1 and f 2, respectively.
The two beating signals are electronically mixed in order to
produce an electric signal f 1 − f 2 reporting the relative fluctua-
tions between the two modes. This filtered and frequency-
multiplied signal serves as the external clock to the digitizer.

Fig. 3. (Color online) Iodine absorption spectra at a resolution
of 0.02 cm−1 with two different degrees of zoom. For each inset:
(upper) dual-comb spectrum with free-running lasers and
sampled at the constant clock rate of the digitizer, (middle)
dual-comb spectrum with free-running lasers and with the
adaptive clock, (lower) reproduced from the atlas of [12]. The
dual-comb spectra are both measured within 12 ms in identical
experimental conditions but the clock for digitization. The spec-
trum of [12] is measured with a 50 cm long I2 cell; therefore the
lines in our adaptive spectrum are more intense.
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The continuous-wave erbium-doped fibre laser is emitting at
1,542.5 nm and is stabilized against an ultra-low-expansion
Fabry–Perot high finesse resonator. It has a linewidth of 1.5 Hz in

a 1-Hz bandwidth and thermal drifts of its central position of
20 mHz s! 1 (Predehl et al.38). Figure 4 shows the beat notes at
460-ms (Fig. 4a) and 1.3-s (Fig. 4b) measurement times. Their
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Figure 2 | General sketch of adaptive dual-comb spectroscopy. The output of a free-running femtosecond (fs) erbium-doped fibre laser is combined with
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the high acquisition speeds that have popularized the single-
frequency approach.

3.5 Scattering and Image Depth

The imaging properties of CRSmicroscopy are ideally suited for
generating chemical maps of tissues: submicrometer resolution,
fast image acquisition, and label-free chemical contrast are

essential for successful tissue imaging. The applicability of
CRS is limited, however, by linear interactions of photons
with tissue components: absorption and scattering of light.
These processes are effectively described by the absorption
coefficient μa and the scattering coefficient μs.

83 At near-infra-
red wavelengths, μs ≫ μa in most tissue types, which makes the
process of light scattering the dominant limiting factor in tissue
imaging studies with focused beam geometries.

Fig. 7 Hyperspectral SRL imaging of C. elegans. (a) SRL image at 2850 cm−1. Scale bar is 25 μm.
(b) Hyperspectral image taken in the 2800 to 3000 cm−1 range with 6 cm−1 spectral resolution.
Colors are the RGB representation based on the weights of the three largest components from a vertex
component analysis. (c) Hyperspectral image represented by the retrieved Raman spectra from a prin-
cipal component analysis. Each color corresponds to a distinct Raman spectrum.

Fig. 6 Several hyperspectral CRS schemes, here shown for CARS. (a) Spectral sweeping of ωs with
narrow band pump and Stokes pulse spectra. A single point detector is used. (b) Temporal sweeping of
spectrally chirped pump and Stokes pulses, also called spectral focusing. Temporal scan results in a
spectral scan of ωp − ωs with narrowband resolution while using a single point detector. (c) Temporal
sweeping of two replicas of a broadband pulse, resulting in temporal interferences. A Fourier transform
of the interferogram yields the spectral content. Spectral resolution is determined by the Nyquist sampling
of the temporal scan. A single point detector is used. (d) Multiplex CARS with a narrowband pump pulse
and a broadband Stokes pulse. The spectral resolution is determined by the width of the pump pulse.
The signal is spectrally dispersed and detected by a detector array.
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Dual-‐comb	  CARS	  microspectroscopy	  setup	  
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Setup	  for	  analysis	  of	  wavefront	  
	  
	  
	  

resolution and spectral span only limited by the measurement time
and the spectral bandwidth of the femtosecond lasers.

Figure 2 sketches the experimental setup (see Methods), which is
similar to that used in dual-comb absorption spectroscopy11–13 except
for dispersion management and spectral filtering to isolate the CARS
signal from the comb beams. As the Raman-like two-photon excitation
involves virtual energy levels, dispersion decreases both the spectral span
and the excitation efficiency. The time-domain interference signal—the
interferogram—is periodic. Every 1/df, a strong burst mostly contains
the non-resonant four-wave mixing signal resulting from the interfer-
ence between the overlapping pulses of the two combs. A reproducible
modulation (Fig. 3a), due to the CARS signal only, follows the burst and
has a duration proportional to the coherence time of the sample transi-
tions. A time-windowed portion of the interferogram, which excludes
the interferometric non-resonant contribution, is Fourier transformed.
The width of the window is chosen according to the desired spectral
resolution (see Methods for a detailed explanation of the recording
parameters). The resulting spectra (Fig. 3b–d) span Raman shifts from

200 cm21 to 1,400 cm21. The non-resonant background, which strongly
lowers the sensitivity of CARS, is entirely suppressed, as in other specific
CARS schemes20–23.

We illustrate acquisition times with three spectra at an apodized
resolution of 4 cm21 and recorded with df 5 100 Hz (Fig. 3b) or 5 Hz
(Fig. 3c, d) for a mixture of hexafluorobenzene, nitrobenzene, nitro-
methane and toluene in a cuvette 5 mm long. The spectra involve
no averaging and were measured in 14.8ms (Fig. 3b) and 295.5ms
(Fig. 3c, d); the number of individual spectral elements (defined as
the spectral span divided by the resolution) for all three spectra is
300. The signal-to-noise ratio culminates at 1,000 for the most intense
blended line of toluene and nitrobenzene in Fig. 3c. Recorded under
different experimental conditions, the three spectra show great sim-
ilarities in line position and relative intensity.

Imaging capabilities are illustrated with a capillary plate (25-mm
diameter holes, thickness 500mm) filled with a mixture of hexafluoro-
benzene, nitromethane and toluene. For each pixel, we measure an inter-
ferogram within 12ms to obtain a spectrum at an apodized resolution of
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