デュアルTHzコム間ビート 信号の抽出とその応用

テラヘルツ周波数標準研究会@NICT

共同研究者

TATATA

電通大 美濃島薫 教授 産総研 稲葉肇 博士

光領域やTHz領域における超精密周波数ものさし (数万~数+万本に及ぶ狭線幅CWレーザー光が等間隔で並んだ集合体) (単純性,広帯域選択性,高スペクトル純度,周波数逓倍性)

デュアルTHzコムの利用@周波数領域 デュアルTHzコム分光法

CW-THz波の狭線幅特性とTHzパルスの広帯域スペクトル特性の融合 マイクロ波周波数標準へのトレーサビリティ

デュアルTHzコムの利用@時間領域 非同期光サンプリング式THz-TDS (ASOPS-THz-TDS)

ref) Appl. Phys. Lett. 87, 061101 (2005).

デュアルTHzコム分光法, ASOPS-THz-TDS

∆f_{rep}揺らぎ(レーザー間タイミングジッター)が

スペクトルの周波数不確かさを決定

ASOPS-THz-TDSにおける信号の流れ

デュアルTHzコム分光法, ASOPS-THz-TDS

高次コム間ビート(デュアルTHzコム間ビート)m△fren の抽出が必要

①デュアルTHzスペアナを用いたデュアル THzコム間ビートの抽出

②ASOPS-THz-TDSにおけるタイミングジッ ターの抑制

③アダプティブ・サンプリングへの応用

①デュアルTHzスペアナを用いた デュアルTHzコム間ビートの抽出

TATATA

デュアルTHzコム間ビートの抽出

デュアルTHzスペアナを用いた コム間ビートの抽出

ref) Shuko Yokoyama et al., Optics Express, Vol. 16, Issue 17, pp. 13052-13061 (2008)

デュアルTHzスペアナを用いた コム間ビートの抽出

ref) Shuko Yokoyama et al.,Optics Express, Vol. 16, Issue 17, pp. 13052-13061 (2008)

デュアルTHzコム間ビートの RFスペクトル

 $N \times m\Delta f_{rep} = 40 \times 1000次 \times 5$ Hz ≈ 200 kHz

②ASOPS-THz-TDSにおけるタイ ミングジッターの抑制

TATATA

ASOPSにおけるレーザー制御法

f_{rep}とΔf_{rep}両方の安定化が必要!

 40×1057 次 × Δf 5Hz = 211.4kHz

デュアルTHzコム間ビートの 周波数安定性 **1057次のコム間ビート信号の標準偏差** free-run 10^{1} Standard Deviation $[Hz]_{-0}$ 10_{-3} f_{rep1}, f_{rep2} locked Δf_{rep} , f_{rep1} locked 10^{-4} $\Delta f_{rep} = 5Hz$ 10⁻⁵ 0.001 0.01 0.1 Gate Time [s]

低圧ガス分光によるジッターの評価

サンプル:水蒸気50Pa,窒素1350Pa 圧力広がり線幅(予測値):100MHz 測定時間:100s

$$\Delta f = 5Hz$$
において

②∆f & f_{rep1} 制御 ジッターの影響を抑 えれている

③アダプティブ・サンプリングへの 応用

Ref) T. Ideguchi, arXiv:1201.4177 (2012).

モード同期周波数の揺らぎを反映し たサンプリング・クロックを生成す れば、時間軸の線形性を保てる!

・サンプリング

時間軸の線形性が保たれない!

実験光学系

時間波形ダイナミックレンジの比較

THzコム・スペクトル

まとめ

TATAT

デュアルTHzコム間ビートの抽出と その応用

デュアルTHzスペアナを用いて高次のコム間ビートを抽出

- ② ASOPS-THz-TDSにおけるタイミング ジッターの抑制
- ③ 非制御レーザーを用いたアダプティブ サンプリング

11 Aran

THzコム・スペクトル

非制御レーザーによるデュアルTHz分光が可能

