
Phase determination method in statistical generalized
phase-shifting digital holography

Nobukazu Yoshikawa
Department of Information and Computer Sciences, Graduate School of Science and Engineering, Saitama University,

255 Shimo-Okubo, Sakura-Ku, Saitama 338-8570, Japan (nyoshi@ics.saitama‐u.ac.jp)

Received 14 January 2013; accepted 4 February 2013;
posted 20 February 2013 (Doc. ID 183470); published 15 March 2013

A simple estimation method of the relative phase shift for generalized phase-shifting digital holography
based on a statistical method is proposed. This method consists of a selection procedure of an optimum
cost function and a simple root-finding procedure. The value and sign of the relative phase shift are de-
termined using the coefficient and the solution of the optimum cost function. The complex field of an
object wave is obtained using the estimated relative phase shift. The proposed method lifts the typical
restriction on the range of the phase shift due to the phase ambiguity problem. Computer simulations
and optical experiments are performed to verify the proposed method. © 2013 Optical Society of
America
OCIS codes: 090.1995, 090.0090, 100.2000.

1. Introduction

Digital holography is a technique in which the inter-
ference pattern between a light beam diffracted from
an object and a reference beam is recorded by an im-
age sensor, such as a charge coupled device (CCD),
and then processed digitally to reconstruct the entire
object wavefront using, e.g., a Fresnel transform [1,2].
Phase-shifting digital holography has been developed
to avoid the problem of overlap between the object
wavefront and other components and to effectively
exploit the limited spatial resolution of digital cam-
eras [3]. The standard phase-shifting algorithm
requires three or more digital holograms recorded
using a phase-shifted reference wave. The step widths
are typically multiples of π∕2. However, the actual
phase-shift value is typically slightly different to the
theoretical value because of phase-shift errors due to,
for example, the nonlinear properties of the phase
shifter and adjustment errors. Therefore, strict phase-
shifter calibration techniques should be introduced
to suppress the phase-shift errors [4].

Generalized phase-shifting techniques that do
not require a strict phase calibration have also been

developed. In particular, a statistical generalized
phase-shifting technique may be a simple and effec-
tive method for extracting the phase-shift value be-
cause the procedure and the optical system are
almost the same as in the standard three-step phase-
shifting method and the calculation for phase estima-
tion is simple [5–11]. However, the statistical method
usually assumes that the statistical property of
the diffraction field of the object is fully random
and that the phase shift ranges from 0 to π to avoid
phase ambiguity of the inverse trigonometric func-
tion. The first condition may be ensured if the target
object has a complex phase distribution because
sufficient developed random phase distribution is
often observed in the Fresnel diffraction field in the
holography experiment. On the other hand, the sec-
ond condition may be in conflict with the advantage
such that the generalized phase-shifting technique
does not require strict calibration and control of the
phase shifter. This restriction of phase shift may
limit the use of the statistical method in some
applications, such as microscopy [12] and shape
measurement [13].

In this paper, we propose a simple method for
estimating the value and sign of the relative phase
shift for generalized phase-shifting digital hologra-
phy based on the statistical method. In the proposed
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method, a statistical approach is used to extract the
relative phase-shift value without determining its
sign. Then, the correct sign of the relative phase-shift
value is determined by a simple root-finding method
using the optimum cost function that is selected
by the proposed algorithm. The fully complex field
of an object wave is obtained using the relative
phase-shift value with the correct sign. In Section 2,
the principle of the phase estimation method for
the statistical generalized phase-shifting digital
holography is described. We confirm our algorithm
by numerical simulation in Section 3. Experimental
results are presented using a phase-shifting digital
holography system with a phase shifter that has a
coarse resolution in Section 4 and conclusions are
given in Section 5.

2. Principle of the Method

Let us consider an optical configuration for in-line
digital holography as shown in Fig. 1. Here, we
assume that an object is placed at a distance d
from the hologram plane and that A�x; y� � jA�x; y�j
expf jθ�x; y�g and Ri�x; y� � jRj exp�jϕi� are the com-
plex amplitudes of the object and reference plane-
wave on the hologram plane, respectively, where the
amplitude of Ri�x; y� is constant and ϕi is the ith
constant phase shift. We can represent three phase-
shifted holograms as follows:

Ii�x; y� � jAj2 � jRj2 � 2jAjjRj cos�θ − ϕi�;
�i � 0; 1; 2�; (1)

where the coordinate variable is omitted for
simplicity.

Next, we calculate the difference between the pth
and qth holograms as follows:

ΔIpq � Iq�x; y� − Ip�x; y�

� 4jAjjRj sin Δϕpq

2
sin

�
θ −

ϕp � ϕq

2

�
;

�p; q � 0; 1; 2�; (2)

where Δϕpq � ϕq − ϕp. It should be noted that ΔIpq
consists of a constant coefficient that includes the
relative phase shift and a sinusoidal function that
represents the interference term. We consider
the average of the absolute square value of the

subtraction hologram for the whole hologram, which
can be written as follows:

Epq � hjΔIpqj2i

� 8jRj2 sin2 Δϕpq

2
fhjAj2i

− hjAj2 sin�2θ − ϕp − ϕq�ig; (3)

where hi is the averaging operator over the whole
frame. If the distance from the object plane to the
hologram plane is sufficiently large, the phase of the
object wave on the hologram plane can be considered
a spatially random distribution owing to the Fresnel
diffraction. Supposing that the statistical properties
of the diffraction field correspond to those of a fully
random field, the second term in Eq. (3) reduces to
zero and we can write the following expression:

Epq � 8jRj2 sin2 Δϕpq

2
hjAj2i: (4)

Now, we introduce a positive parameter κ, which we
define as κ ≡ �4jRj2hjAj2i�−1. Consequently, the rela-
tive phase-shift value can be derived as

Δϕpq � arccos�1 − κEpq�: (5)

The relative phase-shift value can be obtained as a
principal value within a range [0, π] due to the prop-
erties of the arccosine function. Therefore, the phase
shift must be restricted to within this range in order
to obtain the correct phase-shift value. To avoid this
restriction, the sign of the relative phase shift must
be determined appropriately.

In order to determine the sign, we consider a new
constraint condition. Because measurements of the
phase are only available modulo 2π, not only the
phase but also the relative phase-shift value gener-
ally has 2π ambiguity. Therefore, the total summa-
tion of the cyclic relative phase shift can be
described as

Δϕ01 � Δϕ12 � Δϕ20 � 2mπ; (6)

where m is an integer. In this study, we refer to this
constraint condition as a cyclic phase constraint con-
dition. Now, we consider the cost function as

f n�κ� � c01Δϕ01 � c12Δϕ12 � c20Δϕ20; cpq � �1;

(7)

where the coefficient corresponds to the sign of the
phase shift since Δϕpq is positive because of the
nature of the arccosine function. If the cost function
equals 2mπ, then the cost function satisfies the cyclic
phase constraint condition and its coefficient is the
correct sign of the phase shift. There are eight com-
binations of signs.

Fig. 1. (Color online) Optical configuration: BE, beam expander;
BS, beam splitter; M, mirror; PS, phase shifter; and OBJ, object.
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f 1 � Δϕ01 � Δϕ12 � Δϕ20;

f 2 � Δϕ01 � Δϕ12 − Δϕ20;

f 3 � Δϕ01 − Δϕ12 � Δϕ20;

f 4 � Δϕ01 − Δϕ12 − Δϕ20;

f 5 � −Δϕ01 − Δϕ12 − Δϕ20�� −f 1�;
f 6 � −Δϕ01 − Δϕ12 � Δϕ20�� −f 2�;
f 7 � −Δϕ01 � Δϕ12 − Δϕ20�� −f 3�;
f 8 � −Δϕ01 � Δϕ12 � Δϕ20�� −f 4�: (8)

However, half of the cost functions are equivalent
to sign inversions of the other half of the cost func-
tions. This means that each pair of corresponding
cost functions has opposing rotational directions of
the phase. Therefore, we need only confirm four types
of cost function.

We confirmed the value of the four cost functions
within the range of κ by computer simulation as
shown in Fig. 2. The range of κ can be deduced ac-
cording to the condition enforced by the nature of
the arccosine function, which is −1 ≤ 1 − κEpq ≤ 1,
that is, 0 < κ ≤ 2∕Epq. If the maximum of Epq is de-
fined as Emax � max�E01; E12; E20�, the range of κ
can be obtained as

0 < κ ≤
2

Emax
: (9)

Figure 2(a) shows the cost function as a function of
κ when the correct combination of signs is assumed to
be f 1. Note that only the cost function f 1�κ� crosses
the horizontal axis f n�κ� � 0, where f 1�κ� − 2π is also
plotted to illustrate the principal value. Similarly,
if the correct combination of signs is f n for n � 2,
3, and 4, the cost function f n�κ� crosses the horizontal
axis f n�κ� � 0. Figure 2(b) shows the result for n � 3.
Consequently, only one of the four cost functions
completely satisfies the cyclic phase constraint con-
dition within the range of κ. Therefore, the optimum
cost function can be selected by evaluating the zero-
crossing property of the cost function.

The selection procedure for the optimum cost func-
tion is performed as follows. Supposing that κ0 is the
solution of f n�κ� � 2mπ, and that α is near zero and
satisfies 0 < α < κ0 < 2∕Emax. We calculate the val-
ues of the cost function at κ � α and κ � 2∕Emax.
In order to consider a principal value, the cost func-
tion can be written as f �κ� � f 1�κ� − 2π for n � 1,
and f �κ� � f n�κ� for n � 2, 3, and 4. Then, the
optimum cost function can be determined by eval-
uating the zero-crossing condition, which is that
the sign of the cost function changes around κ0,
i.e., f �α�f �2∕Emax� < 0.

Using the optimum cost function, the solution
κ0 can be obtained by finding a zero-crossing point
by means of a simple root-finding method, such as
the bisection method or the secant method. Conse-
quently, the value and sign of the relative phase shift
can be obtained by

Δϕpq � ĉpq arccos�1 − κ0Epq�; (10)

where ĉpq is the coefficient of the optimum cost
function.

The object wave in the hologram plane can be ob-
tained after some algebraic manipulation of Eq. (1)
as follows:

A�x; y� � ejϕ0

jRjΔ f�1 − e−jΔϕ20�ΔI01 � �1 − ejΔϕ01�ΔI20g;

(11)

where Δ � −2j�sin Δϕ01 � sin Δϕ12 � sin Δϕ20�, and
ϕ0 is an initial phase that can be omitted without any
loss of generality. The complex field of the object
wave in the object plane can be calculated by the in-
verse Fresnel transform, by distance d, of the object
wave obtained using the correct relative phase-shift
value in the hologram plane. It is noted that the

Fig. 2. (Color online) Variation of cost functions within the avail-
able range of κ when the optimum cost function is (a) f 1�κ� and
(b) f 3�κ�, where f 1�κ� − 2π is also illustrated because the principal
value is considered.

20 March 2013 / Vol. 52, No. 9 / APPLIED OPTICS 1949



proposed algorithm cannot determine the rotational
direction of the phase. If the opposite rotation of
phase is used, the complex conjugate of the object
wave is calculated by Eq. (11). However, it is not a
serious problem because the object wave can be
easily obtained using the sign inversion of the rela-
tive phase-shift value.

3. Numerical Simulation

To confirm the validity of the proposed method, we
conduct a numerical simulation. The wavelength of
the laser for illuminating the object is assumed to
be 632.8 nm. The size of the image sensor is assumed
to be 1024 × 1024 pixels with a 6.45 μm pixel pitch.
For an object, we assume a spherical phase object
placed 20 mm away from the image sensor as shown
in Fig. 3(a). Three phase-shifted holograms are simu-
lated using the reference plane-wave with preset
arbitrary phase shifts. The diffracted field is calcu-
lated using the angular spectrum method [14].

We present a typical result of the proposed
method. The absolute phase-shift values are as-
sumed to be 0.0, 1.178, and 5.498 rad. Therefore, the
relative phase-shift values are 1.178, 4.320, and
−5.498 rad, and those principal values reduce to
�1.178, −1.963, and�0.785, respectively. Figure 3(b)
is one of the three phase-shifted digital holograms.

A bright interference fringe is observed in the center
area because diffracted light is collected by the effect
of the spherical phase. Using the selection method
with α � �2∕Emax�∕100, the optimum cost function
was selected to be f 3�κ� and then �c01; c12; c20� �
��1;−1;�1�. The solution κ0 was obtained using
the bisection method after about 15 iterations as
shown in Fig. 4. Consequently, the relative phase-
shift values were estimated to be �1.187, −1.977,
and �0.790 rad, and the absolute estimation errors
were 0.009, 0.014, and 0.005, respectively. The object
wave in the hologram plane was obtained using
Eq. (11). Figure 3(c) is a phase map reconstructed
from the hologram obtained by using the proposed
phase-shifting method. For comparison, the recon-
structed phase map by the Fresnel transform alone
is also shown in Fig. 3(d), where the hologram with-
out the direct current term is used to confirm the
difference of the reconstructed phase map and there-
fore the phase distortion is observed in the center
area because of the interference between �1 and
−1 order components. The results show that the pro-
posed method can estimate the correct value and
sign of the relative phase shift and that the object
wave is clearly reconstructed without the zeroth-
order and the conjugate wave. The proposed method
enabled clearly reconstruction of the object wave

Fig. 3. (Color online) Computer simulations: (a) phase object, (b) typical phase-shifted digital hologram, (c) and (d) phase map recon-
structed from the hologram obtained by using the proposed phase-shifting method and the Fresnel transform alone, respectively.
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even if the relative phase-shift value was assumed to
be other arbitrary values including the multiples of
π∕2 that are used in the standard phase-shifting
algorithm. However, when the relative phase-shift
value was too small, that is, Δϕpq ≈ 0, the proposed
method did not work well because the modulation
depth of the subtraction hologram shown in Eq. (2)
became small.

Next, we confirm the phase estimation error when
the hologram is assumed to be corrupted by the
addition of white Gaussian noise. The phase estima-
tion error is defined as error � 1∕3

P�jΔϕ01 − Δϕ̂01j�
jΔϕ12 − Δϕ̂12j � jΔϕ20 − Δϕ̂20j�, where Δϕpq and Δϕ̂pq

are original and estimated phase-shift values.
Figure 5 shows the phase estimation error as a func-
tion of the signal to noise ratio. It can be seen that
the phase estimation error can become small enough
if the measurement can be performed with a suffi-
ciently high signal to noise ratio. In this case, in
order to obtain the phase estimation error under
0.01 rad, it is necessary to maintain the signal-to-
noise ratio of over 20 dB.

4. Experimental Results

In this section, optical experiments are performed
to verify the proposed method. We used a Mach–
Zehnder-type interferometer as shown in Fig. 1.
AHe–Ne laser of 632.8 nmwas used as a light source.
The reference beam was a normal plane-wave. The
phase shift of the reference wave was obtained by
controlling a mirror mounted on a translation stage
that has a minimum step of about 2 μm. The object
was a green algae volvox placed at a distance of
d � 20 mm away from the CCD camera. Three dig-
ital holograms with an arbitrary phase shift were
recorded with 1024 × 1024 pixels by CCD camera
with a square pixel 6.45 μm in size. Typical holo-
grams are shown in Fig. 6.

Using the proposed method, the optimum cost
function was selected to be f 2�κ� and then
�c01; c12; c20� � ��1;�1;−1�. The relative phase-shift
values were estimated to be �2.056, �0.743, and
−2.799 rad by using the solution and coefficient
of the optimum cost function. The object wave in
the hologram plane was obtained using Eq. (11).
Figures 7(a) and 7(b) show images of the numerically
reconstructed intensity and phase. The magnified
reconstructed images of the same area in the recon-
structed images in Figs. 7(a) and 7(b) are shown in
Figs. 7(c) and 7(d), respectively. The object wave was
clearly reconstructed without the unwanted compo-
nents. We can see that some spherical colonies in
a hollow sphere can be observed. Note that the phase
shifter cannot be precisely calibrated and controlled

Fig. 4. (Color online) Determination of κ0 using the bisection
method.

Fig. 5. (Color online) Phase estimation error as a function of the
signal-to-noise ratio.

Fig. 6. Typical phase-shifted digital holograms.
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due to the coarse step size of the phase shifter in the
experiment. These results indicate that the proposed
method can be implemented using a simple and low-
cost phase-shifting device.

5. Conclusions

We have proposed a new phase estimation method
for statistical generalized phase-shifting digital
holography. The value and sign of the relative phase
shift can be estimated by imposing a specific con-
straint condition of the total summation of the cyclic
relative phase shift on the phase-shift value obtained
by the statistical method. The method consists of a
selection procedure of an optimum cost function and
a simple root-finding procedure. The object wave is
obtained by using the correct phase-shift value
calculated using the coefficient and solution of the
optimum cost function. The method lifts the typical
restriction imposed on the range of phase-shift
values by the phase ambiguity problem. The method
is easily implemented using a simple phase shifter
because precise calibration and control of the phase
shifter are not necessary.

This study was supported by a Grant-in-Aid for
Scientific Research (C) 22560034 from the Ministry
of Education, Culture, Sports, Science, and Technol-
ogy, Japan.
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