## 第二高調波発生(SHG)顕微鏡の小型化

## Compact second-harmonic-generation (SHG) microscope

# 非 〇厚田耕佑(徳島大) 安井武史(徳島大)

Kosuke ATSUTA, Tokushima University Takeshi YASUI, Tokushima University

Key words : Microscopy, SHG, Collagen

#### 1. はじめに

近年,コラーゲンの新しい観察手段として,生体コラーゲン SHG (second harmonic generation:第2高調波発生光)顕微鏡が注目されている[1]. SHG 顕微鏡は,非接触・非侵襲でのコラーゲンの選択的観測が可能であるため,皮膚計測[2]や再生医療[3]を始めとしたコラーゲン関連分野での利用が期待されている.しかし,従来の SHG 顕微鏡は,大型・複雑で,その利用は実験室レベルに限定されていた(図1).SHG 顕微鏡を,臨床応用も含めた各種応用分野で幅広く利用するためには,レーザー光源も含めた装置の小型化が強く望まれる.もし,光ファイバー技術を SHG 顕微鏡に上手く導入できれば,ファイバーベース SHG 顕微鏡が可能になり,大幅な小型化が実現できる.本発表では,ファイバーベース SHG 顕微鏡用の小型プローブヘッドの開発し,小型化を試みた.



Fig.1 Conventional SHG microscope

#### 2. 小型プローブ SHG 顕微鏡

従来の SHG 顕微鏡では、レーザー光源が大型・複雑であ る上に、自由空間光学系に基づいた顕微鏡配置となっていた ため、小型化が困難であった(図1).もし、小型ファイバー レーザーを光源とする一方で、顕微鏡部分を小型プローブへ ッドに納め、その両者間を光ファイバーで結合することが出 来れば(図2)、装置の小型化だけで無く、ロバスト・アライ メントフリー・フレキシブルなどの実用性を付与することが 出来、臨床現場でも利用可能になる、小型ファイバーレーザ ー光源及び超短パルス光伝播用光ファイバーは市販されて いるが、小型プローブへッドは自作する必要がある.



#### 3. 小型顕微鏡ヘッド

図3にセットアップを示す. Cr:F レーザー( $\lambda_c$  = 1250 nm,  $\Delta \tau$  = 90 fs, P<sub>mean</sub> = 250 mW, f<sub>rep</sub> = 73 MHz)から出た励起光は, プローブ外部のガルバノ走査ミラーにより反射後, プローブ のヘッド部分に導かれ, リレーレンズ対とダイクロイックミ ラー (DM)を通過し, 対物レンズ (油浸, NA=0.9, WD=350µm) で試料上に集束される. サンプルからの後方散乱 SHG 光は DM で反射され, バンドパスフィルタ (透過波長=625 nm) で フィルタリングされ, 最後に SHG 信号が光電子増倍管 (PMT) によって検出される. プローブの光学系はレンズチューブシ ステムに収まった構成である(図 4).





Fig.4 The microscope head

### 4. リサージュスキャン再構成イメージング

従来のレーザー走査顕微鏡では走査ミラーとしてガルバ ノミラーが一般的に用いられ,直感的に分かり易いデータ配 列でイメージデータを取得できるラスタースキャン(図 5(a)) でのミラー走査によるイメージングが行われてきた.一方で, より高速走査が可能な小型 MEMS ミラーの走査方式にはリ サージュスキャン(図 5(b))が採用されていることが多い.こ の方式では、ふたつの正弦波に対応した複雑な軌道を描く. また、リサージュスキャンでは座標毎に通過する回数が異な る.そのため、イメージングを行う際に、あるタイミングに おけるピクセル座標(位置情報)を知る必要がある.そのため、 ガルバノミラーの駆動信号である正弦波を同時に取り込み. その電圧情報を座標(位置情報)の変換に用いた.取得した駆 動信号の値をピクセル数に対応する 0~255 の整数値をとる ように処理した.以上より、ピクセルの列番号および行番号 は、

 $x_n = 128 + 128\sin(2\pi f_x n\Delta t)$ 

 $y_n = 128 + 128\sin(2\pi f_x n\Delta t)$ 

として 256\*256 の各ピクセルにマッピングされる.



(引用元:http://www.signal.co.jp/vbc/mems/sp/ecoscan/)

このリサージュスキャン再構成を計測に適用し, リサージ ュスキャンによるイメージの確認を行った(図 5). 走査ミラ ーには従来どおりガルバノミラーを用いているが, 正弦波の 駆動信号を与えることでリサージュスキャンとした. サンプ ルにはスライスした腱を用いた. リサージュスキャン特有の 模様がわずかに見受けられるが, コラーゲンの構造や腱独特 の特徴的なコラーゲン線維分布が確認できる.



Fig.6 SHG images by Lissajous

#### 5. まとめ

SHG 顕微鏡の小型化を目指し、プローブのヘッド部分を構築した.また、MEMS ミラーに採用されるリサージュスキャンの再構成を実現し、リサージュスキャンによるイメージングに成功した.

今後の予定として,図7に示すような小型プローブヘッド に走査ミラーとして MEMS ミラーを導入した SHG 顕微鏡を 構築する.また,MEMS ミラーの駆動信号は kHz オーダー と高速であるため,FPGA(Field-Programmable Gate Array)を用 いた信号取得を行い,生体イメージングなどを試みる予定で ある.



Fig.7 SHG microscope probe using MEMS mirror

### 参考文献

- P. J. Campagnola and C.-Y. Dong, Laser Photon. Rev.5, pp. 13 –26 (2011).
- (2) T. Yasui et al. J. Biomed. Opt.18, art. 031108 (2013).
- (3) E. Hase et al., Proc. SPIE 9329, art. 93292Q (2015).