

M2後期研究報告

小倉 隆志

2015/12/29

Ref) http://www.jstshingi.jp/abst/p/12/1258/pre/astep022507.pdf

Ref) Japanese Dermatological Association

特徴:高分解能、深部イメージング可能 課題:検出器(PZT)の検出感度や周波数応答性

Ref) Scientific Reports **4**, 4496 (2014).

光信号の強度取得→高精度化や高ダイナミックレンジ化に課題

先行研究

Ref) S. Wang et al., "Passively mode-locked fiber laser sensor for acoustic pressure sensing," J. Mod. Opt. **60**, 1892-1897 (2013)

研究目的

TATATA

・<mark>偏位法(</mark>ピーク位置計測)の代わりに**零位法** (f_{rep}安定化用制御電圧計測)を用いる ・しかし、計測の周波数応答性は、制御系の応答

速度に制限される

・位相比較器の信号を直接計測することで、計測 の高速化を目指す

実験装置

(f_{rep}安定化モード同期Erファイバーレーザー and 位相検出)

共振器基本特性

共振器パラメータ

オシレータ条件	長さ[m]	分散值 [ps2/m]	分散值 [ps2]	屈折率	光路長 [m]
SMF	4	-0.02286	-0.09144	1.48	5.92
EDF(30dB)	3.3	0.01366	0.045078	1.48	4.884
素子(WDM,70:30カプラ)	0.102	0	0	1	0.102
EOMモジュール	0.25	0	0	1	0.25
LiNbO3	0.055	0.1	0.0055	2.2	0.121
合計	7.707		-0.040862		11.277

11 Dan

歪み付加用PZT特性評価

0V→100Vでfrepは約8Hz変化、100V→0Vでfrepは約6Hz変化

歪み付加用EOM特性評価

0V→160Vでfrepは約0.6Hz変化、160V→0Vでfrepは約1.4Hz変化

実験結果(frep安定化制御)

1	11	0♡/	- 2	2 10	97 3			4				0.	.Os
2										+			
1_ 1 _	. Hel	(])		et ditertere	hdeed	tere strate	уļи					
Ŧ	le (dit		AL M		a Hara	in i		21/10	in in the	lai asr	i jav		
	n nin					1.10						din na	
									1m\	V			
										+ 0110 10111 - - -			
										+			

制御時

実験結果(PZT歪み付加,sin波周波数10kHz 電圧±10V、バイアス10V)

周波数50kHzまでの信号を確認(PZT共振周波数69kHz)

実験結果(EOM歪み付加,sin波、 電圧±20V、バイアス80V)

周波数10~500kHzまでの信号を確認(電圧アンプ帯域500kHz)

超音波トランスデューサ

トランスデューサのノイズ対策(シールド)が必要 トランスデューサ付属のBNCケーブルが細いため?

トランスデューサのノイズ低減(シールド)
CWレーザーと共振器出力とのビート信号
を計測し、frep変化の有無を確認する。
3センサー部の製作

静的歪み計測(2)

PZT制御電圧揺らぎ 10mV

歪み感度 281 mV/µm

最小変位量:0.036µm

PZT制御電圧可変範囲 10V(モニタ値)

検出可能な最大変位量

まとめ

f_{rep}制御電圧を用いた零位法計測
①最小検出可能変位量=0.036µm
②最大検出可能変位量=36µm
③周波数応答特性: f_c=200 Hz

<u>今後の予定</u>

 ①電気光学変調器制御型ファイバー光コム (周波数応答>200kHz)による計測高速化
②光音響イメージングへの応用

先行研究

Ref) Horacio Lamela, et al., "Interferometric fiber optic sensors for biomedical applications of optoacoustic imaging" J. Biophotonics. **4**, 3 (2013)

実験結果(歪み付加,パルス波 周波数100Hz、パルス幅1ms)

