研究紹介

テラヘルツ周波数コムを用いた 精密テラヘルツ分光法に関する研究

安井研究室

PD 謝 宜達

	ガスクロマトグラフィー	赤外吸収分光法		
感度	高い	普通		
測定時間	数分~数時間	数秒		
同時分析	少数	複数		
エアロゾル	サンプル前処理が必要	散乱により分析 能力が低下		
装置規模	中型	小型		

多数の気体分子種やエアロゾルが混在した状況でも、 迅速かつ正確に、『ありのままの状態』のVOCガスを 分析可能な手法が望まれている

テラヘルツ(THz)領域

■ 光波と電波の境界領域に存在する電磁波

□ 周波数:0.1THz~10THz,波長:30~3000mm

Ra	Radio Communications & Radar electronics				Optical Communications			Medical Imaging		Astrophysics
				phot	photonics					
	micro- wave and RF	milli- metre	TERAHERTZ	z in	infrared visible ultra- violet		x-ray			
		11				1			1	
	10 ¹⁰ Hz	10 ¹¹ Hz	10 ¹² Hz	10 ¹³ Hz	10 ¹⁴ Hz	10 ¹⁵ Hz	10 ¹⁶ Hz	10 ¹⁷ Hz	10 ¹⁸ Hz	
frequency (Hz)										

VOCガスの分析に

利用可能

 ①自由空間伝搬
 ②コヒーレント・ビーム
 ③広帯域スペクトル
 ④極性気体分子の回転遷移が 豊富(THz指紋スペクトル)
 ⑤散乱微粒子に対する低散乱性 (エアロゾルの影響を受けにくい)

NASA データベースにより引用

エアロゾルが混在した状況でも、迅速かつ正確に、 『ありのままの状態』のVOCガスを分析可能と期待される

研究目的

VOCガス分析に利用可能な精密THz分光法の開発

①非同期光サンプリング式THz 時間領域分光法

②THzコム分光法

③ギャップレスTHzコム分光法

非同期光サンプリング式THz時間 領域分光法(ASOPS-THz-TDS) ~機械式時間遅延走査の省略によるスペクトル 分解能の大幅な向上~

Ref) T. Yasui, K. Kawamoto, <u>Y.-D. Hsieh</u>, Y. Sakaguchi, M. Jewariya, H. Inaba, K. Minoshima, F. Hindle, and T. Araki, "Enhancement of spectral resolution and accuracy in asynchronous-optical-sampling terahertz time-domain spectroscopy for low-pressure gas-phase analysis," Opt. Express Vol. 20, Iss. 14, pp. 15071–15078 (2012).

非同期光サンプリング式THz-TDS(ASOPS-THz-TDS)

Ic= 1550 nm f_1 =56,124,000Hz , f_2 = 56,124,005Hz , $M = f_2-f_1 = 5Hz$

まとめ

非同期光サンプリング式THz-TDSにより、 高いスペクトル確度を実現できた

□ スペクトル分解能:52MHz

(機械式THz-TDS:10GHz)

<u>っスペクトル確度・10-6</u> 低圧ガスの圧力広がり線幅(数MHz)と

比較すると、この分解能まだ不十分である

従来の機械式時間遅延ステージが不要により、高速測定が可能になる

THzコム分光法

~THzコムをスペクトルの周波数目盛りとした THz分光法の実現~

Ref) <u>Y.-D. Hsieh</u>, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, Y. Takahashi, M. Yoshimura, Y. Mori, T. Araki, and T. Yasui, "Terahertz comb spectroscopy traceable to microwave frequency standard," IEEE Trans. Terahertz .Tech., Vol. 3, Issue 3, pp. 322-330 (2013).

測定時間窓をパルス周期以上に拡大する!

ギャップレスTHzコム分光法 ~THzコムのギャップレス化によるスペクトル 確度の大幅な向上~

Ref) <u>Y.-D. Hsieh</u>, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, "Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs," Sci. Rep., 4, 3816 (2014).

THzコムのギャップレス化

THzコム分光法では、各コムが離散的 に分布してるので、サンプリン間隔 はコム間隔と等しくなる ^{Co} (スペクトル確度を制限)

コム・モードを高精度に少しずつ 横ずらししながらコム・モード間 のギャップを補完する

コム線幅<<コム間隔

コム間ギャップという本質 的問題を解消できる!

低圧水蒸気ガス分光

Rotational transition $1_{10} \boxtimes 1_{01}$: 0.5569360THz@NASA database (Pressure broadening linewidth = 23 MHz @H₂O:10Pa&N₂:320Pa)

低圧水蒸気の吸収線

アセトニトリルによるスペクトル確度の評価

- ・ 対称コマ型分子であるアセトニトリル(CH₃CN)は、その回転遷移に よる吸収線がTHz領域に回転係数2B(=18.4GHz)で等間隔に現れ ることが知られている
 コムの線幅: 25MHz
- 圧力:40Pa

コムの線幅: 25MHz 10回走査

まとめ

		分解能	確度	スペクトル サンプリンク間隔	帯域
\ ج	/OCガス分析に 求められる条件	数MHz	10 ⁻⁶		2~3 THz
開発手法	ASOPS-THz- TDS	52MHz	10-6	56MHz	1.2THz
	THzコム分光法	2.5MHz	10-4	250MHz	2THz
	ギャップレス THzコム分光法	2.5MHz	10 ⁻⁷	2.5MHz	2THz

VOCガスに利用可能THz分光法の実現

エアロゾル(線香煙)透過測定

可視光レーザー:632nm THz計測条件:計測時間:1s、時間窓:1ns、差周波:50Hz

線香煙混在アセトニトリル・ガス分光計測

計測時間:1s, 5s, 10s, 15s, 20s, 30s, 40s, 50s, 100s サンプル:アセトニトリル溶液

ご静聴ありがとうございました

- アセトニトリルの場合,回転軸:I_c=I_b<I_a、対称コマ分子である
- 対称コマ分子が回転する時に、主に特定な回転軸を回転している

 $v = 2B(J+1) - 2D_{JK}K^{2}(J+1)$ B:回転係数, J, K:回転量子数, D_{JK} :遠心力歪定数

Ref: Virtual chemistry, http://virtualchemistry.org/index.php

ドップラー線幅はキャリア周波数に比例する。THz 波の場合、 圧力幅との大小関係が逆転するので,得られる吸収スペクトル はドップラー拡がりよりも圧力拡がりが支配的になる

Ref: Hollas, Modern spectroscopy

ASOPS-THz-TDSでは、周期1/f₁の繰り返し信号が、周期1/△fの繰り返し信号に、時間 スケールを拡大したと見なせるので、時間スケール拡大率は、以下の式で与えられる、

THz帯域BW_{THz}と検出RF帯域BW_{RF}の関係は、上述の時間スケール拡大率から、以下の式で与えられる.

RF bandwidth [MHz]

THzパルス列と振幅スペクトル

