2nd Research Area Meeting of "JST, ERATO MINOSHIMA Intelligent Optical synthesizer Project" December 22, 2014 at National Institute of Advanced Industrial Science and Technology

Ghost Imaging

The University of Tokushima, Japan

Yasuhiro MIZUTANI, Kyuki SHIBUYA, Tetsuo IWATA

introduction What is the Ghost Imaging (GI)?

characteristics and advantages

applications

- fluorescent GI microscopy
- 2D GI ellipsometry
- conclusions

What is the Ghost imaging?

single pixel detector

random patterned Illumination (incoherent)

General imaging

Digital camera with 2D sensor

Ghost imaging

Principle for Ghost imaging

Principle for Ghost imaging

First published paper of the Ghost imaging

measurement for photon pare generation

Observation of Two-Photon "Ghost" Interference and Diffraction

Applied Øptics Lab.

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko,* and Y. H. Shih Department of Physics, University of Maryland, Baltimore County, Baltimore, Maryland 21228 (Received 11 August 1994)

Principle for Ghost imaging

Single axis ghost imaging

Published papers of Ghost imaging

3D Computational Ghost Imaging B. Sun *et al.*, Science. **340**, 844-847, (2013).

shape from shading by 4 single pixel detectors and projector

accumulated numbers: 50000

Single pixel imaging

general imaging

single pixel imaging

single pixel imaging, compressive sensing **coded** pattern illumination **analytic processing** high speed imaging (limited illuminated patterns)

ghost imaging

random pattern illumination correlation based imaging low speed imaging (many illuminated pattern) high sensitivity

For comparison of the visibility

Reduction of accumulated number

of computational ghost imaging

small ←

weak point of ghost imaging increase of measurement time

low efficiency of object information

- random pattern illumination
- correlation method

focused on: regularity of illumination pattern

circulatory pattern by Hadamard matrix

random pattern

characteristics

- entries +1or -1
- square matrix
- mutually orthogonal rows and columns

high efficiency of the object information by the regularity

Dec. 22, 2014 at AIST

Applied for a circulatory pattern to ghost imaging

Visibility of circulatory pattern ghost imaging

Advantages of Ghost imaging

High spatial resolution ghost imaging by microscope

Ghost imaging microscope system

High spatial resolution ghost imaging by microscope

Microscopic imaging detected by GI-based microscope

Imaging of non-uniformity diffraction object

Imaging-position dependency

Applied for Biological cell imaging

Applied for Biological cell imaging

Ellipsometry

analysis process of ellipsometry

Category of optical setup for ellipsometer

Phase modulation type ellipsometer (S. N. Jasperson et al., Rev. Sci. Instrum. 40, (1969))

phase modulation by using photo-elastic modulator (PEM)

Principle of phase modulated ellipsometer using PEM

detected intensity

$$I(t) = \frac{I_0}{4} \{1 + \sin 2\psi \sin \Delta [1.038 \sin 2\pi f t] + \sin 2\psi \cos \Delta [0.864 \cos 4\pi f t] \}$$

$$\frac{I}{4} \{1 + \sin 2\psi \sin \Delta [1.038 \sin 2\pi f t] + \sin 2\psi \cos \Delta [0.864 \cos 4\pi f t] \}$$

Fourier analysis

$$I_{dc} = \frac{I_0}{4}$$

$$I_{1f} = \frac{I_0}{4} (1.038 \sin 2\psi \sin \Delta)$$

$$I_{2f} = \frac{I_0}{4} (0.864 \sin 2\psi \cos \Delta)$$
f"JST,

Principle of phase modulated ellipsometer using PEM

Linearity of correlation coefficient

Linearity of correlation coefficient

Principle of phase modulated ellipsometer using PEM

Principle of Ghost imaging ellipsometry

detected intensity

$$I_{3}(t,n) = \frac{I_{1}(x,y,n)}{4} \{1 + \sin 2\psi \sin \Delta [1.038 \sin \frac{2\pi ft}{4}] + \sin 2\psi \cos \Delta [0.864 \cos \frac{4\pi ft}{2}] \}$$

$$\frac{I_{1}(x,y,n)}{4} \{1 + \sin 2\psi \sin \Delta [1.038 \sin \frac{2\pi ft}{4}] + \sin 2\psi \cos \Delta [0.864 \cos \frac{4\pi ft}{2}] \}$$

Phase difference

Amplitude *ratio*

 $\Delta = \tan^{-1} \left(\frac{0.432 \ G_{1f}(x, y, n)}{0.519 \ G_{2f}(x, y, n)} \right)$

correlation function $G_i(x, y)$ (i = dc, 1f, 2f)

$$G_{i}(x, y) = \langle I_{1}(x, y, n) I_{i}(n) \rangle$$
$$- \langle I_{1}(x, y, n) \rangle \langle I_{i}(n) \rangle$$

$$\langle I_i(n)\rangle = \frac{1}{n}\sum_{k=1}^n I_i(k)$$

Applied Øptics Lab.

 $\psi = \frac{1}{2} \sin^{-1} \left\{ \left(\frac{G_{1f}(x, y, n)}{1.038 G_{dc}(x, y, n)} \right)^2 + \left(\frac{G_{2f}(x, y, n)}{0.864 G_{dc}(x, y, n)} \right)^2 \right\}^{\frac{1}{2}}$ 2nd Research Area Meeting of "

Principle of Ghost imaging ellipsometry

Dec. 22, 2014 at AIST

Simulation results of correlation functions (uniformity sample)

Simulation results of correlation functions (uniformity sample)

GIEによるBK7の数値計算結果

Numerical analysis for accuracy of the GI ellipsometry

conditions

modulation	50 [kHz]
setting value	D =−180~180°, y =0~45°
accumulated number	n=50000 🗖
pattern size	100×100 [pixel]

Numerical analysis for patterned sample of the GI ellipsometry

Optical setup of ghost imaging ellipsometry

Ghost imaging ellipsometer

_	projector	DMD	0.45inch WXGA S450 DMD	sample	10 mm	
		wavelength	550nm			
		contrast ratio	10000:1			
		size	1280×800 [pixel]			
	PEM	frequency	42.08 [kHz]			
		setting l	550 [nm]	ptical synthesizer Project"	ERATE	
	APPLIED	CS LAB.	Dec. 22, 2014 at AIST			

Accuracy measurement of PME without GI

Numerical analysis for accuracy of the GI ellipsometry

n=40000

Experimental results of Si and Au surface

experiment condition		G _{dc}	G_{1f}	G_{2f}
Sample Si, Au		100 2	100	12.55
Accumulated number	46000 (30~hour)	32.57		1990 - Sec.
Pattern size	50 x 50 [pixels]	100 C	1.1	100
Pattern resolution	25 x 25 [pixels]			
Block size	2 [pixel]			
Average number	64			

reconstructed image of phase difference

High resolution 3D imaging by optical frequency comb combined with ghost imaging

depth information with nano order resolution

Conclusions

Applications of computational ghost imaging for weak intensity field has been proposed.

- fluorescent microscopy
 - fluorescent cell image detected by 1/100 weak intensity
 - ellipsometry
 - 2D ellipsometrical image for phase modulated ellipsometer

