State of progress in THz and broadband spectrum manipulation group

Takeshi Yasui (Tokushima University)

Minoshima ERATO 2nd group meeting in 2014 (Dec. 22, 2014@AIST)

Research topics

- (1) Intelligent THz instrumentation and application
- •Adaptive sampling dual THz comb spectroscopy (M2)
- •Broadband THz synthesizer (M2)
- •THz-comb-referenced spectrum analyzer (M2)
- •THz digital holography (B4, just start)
- •THz ghost imaging (M1, not start)
- (2) Novel optical comb measurement and application
- •Full-field confocal optical-comb microscopy (M2)
- •Discrete Fourier transform infrared spectroscopy (Hsieh) (in collaboration with AIST)
- •CARS gas analysis (Harsono, not start)
- •Sensing comb for photoacoustic imaging (M1, just start)

(1) Adaptive sampling dual THz comb spectroscopy

THz gas spectroscopy

(1) Rotational transitions of polar molecules

- ✓ Rich spectral fingerprints
- \checkmark High selectivity and high sensitivity
- High discrimination at low pressure due to narrow Doppler linewidth (~1MHz) <u>Atmospheric pollution</u>
 Multiple gas analysis

(2) Less scattering
 ✓ λ_{THz} >> particle diameter
 ☞ Possible to analyze gas mixed with aerosols (fog, cloud, smoke, soot, etc)

Ref)http://www.nature.nps.gov/air/aqbasics/sources.cfm

compound (VOC) gas

Optical comb and THz comb

How to measure mode-resolved THz comb spectrum

Traditional THz-TDS equipped with mechanical time-delay scanning

Asynchronous-optical-sampling THz-TDS (ASOPS-THz-TDS) Overlap timing between THz and

ref) T. Yasui, Appl. Phys. Lett. 87, 061101 (2005).

No need for mechanical time-delay scanning
No limitation for size of time window

Time scale of ps THz pulse is linearly expanded to µs order

 $1/\Delta$ ($\Delta=f_1-f_2$)

Temporal magnification factor $(TMF) = f_1/\Delta f$

Use of **free-running**, dual fs lasers in dual THz comb spectroscopy

Expand the application fields of dual THz comb spectroscopy

However, timing jitter between free-running dual fs lasers distorts the linearity of time and frequency scales due to fluctuation of TMF!

Influence of timing jitter in ASOPS

Adaptive sampling method

11

Adaptive clock can be generated by beat signal between dual THz comb modes!!

Setup for dual THz comb spectroscopy

Integrated temporal waveform of THz pulses

Integration number=10000

Mode-resolved THz comb spectrum

Constant clock with stabilized lasers

Adaptive clock with free-running lasers

Water vapor at low pressure

Rotational transition $I_{10} \leftarrow I_{01}$ @ 0.556936THz Pressure broadening linewidth = 200MHz

Constant clock with stabilized lasers

Adaptive clock with free-running lasers

Acetonitrile gas at low pressure(1kPa)

0.06

0.05

0.04

0.03

0.02

0.01

18.4 GHz

NASA database

Acetonitrile (CH₃CN)

- One of VOCs
- Very abundant species in interstellar medium

(2) Full-field confocal optical-comb microscopy

MAN

Optical microscopy

Confocal optical microscopy

Light coming from the Obtain focal plane can pass information at through the pinhole the focal plane Confocal Pinhole Focal plane

Detect signal at focal plane

- No stray light
- Depth resolution
- Applicable for thick sample

http://bioimaging.jp/learn/023/

Normal microscopy

Confocal microscopy

Confocal laser microscopy

http://bioimaging.jp/learn/023/index_2.html

Faster image acquisition ! Higher spatial resolution!

Fast confocal microscopy

Dimension-converting comb

Single-shot imaging based on bidirectional conversion between wavelength and 2D space

No mechanical scanning, single-shot imaging, super resolution

Optical setup for line imaging with OSA

Results (2)

1 mmあたりのラインペアの数 (IP/mm)

				グルー
要素番号	0	1	2	3
1	1.00	2.00	4.00	8.00
2	1.12	2.24	4.49	8.98
3	1.26	2.52	5.04	10.10
4	1.41	2.83	5.66	11.30
5	1.59	3.17	6.35	12.70
6	1.78	3.56	7.13	14.30

(3) Discrete Fourier transform infrared spectroscopy (in collaboration with AIST)

- ANA

Fourier transform of transient signal h(t)

Pulse train of THz electric field Upper limit of time window = repetition period of THz pulse

Focus on pieces of different transient signals included in the same one period

Observed time window = One repetition period Is induced by THz pulse train

Discrete Fourier transform spectrum

Each plot has infinite spectral resolution due to infinite time window. However, discrete distribution limits spectral resolution to plot interval. Sweeping of discrete FT spectrum

Experimental setup

Relation between time window and repetition period (Relaxation time > repetition period)

Rotational transition of H_2O at 0.557 THz ($H_2O@6$ Pa& $N_2@140$ Pa) Expected pressure broadening linewidth = 10.6 MHz Relaxation time of absorption = 94ns (25 periods)

Relation between time window and repetition period (Relaxation time > repetition period)

Relation between time window and repetition period

Relation between time window and repetition period (Relaxation time < repetition period)

Rotational transition of H₂O at 0.557 THz (H₂O@1kPa&N₂@3.5kPa) Expected pressure broadening linewidth = 500 MHz Relaxation time of absorption = 2 ns (0.5periods)

Pressure broadening characteristics of H₂O

Spectral interleaving interval limits spectral resolution independent of time window size

Spectroscopy of multiple absorption lines

Spectroscopy of multiple absorption lines

Result

fidential

- *f*_{rep, S}=48.350676MHz→48.350685MHz, 100 times sweep
- ∆*f*=44.99513Hz

Summary

- ANATA

- (1) Intelligent THz instrumentation and application
- •Adaptive sampling dual THz comb spectroscopy (CLEO, to be submitted in this year)
- •THz-comb-referenced spectrum analyzer (CLEO)

(2) Novel optical comb measurement and application

- •Full-field confocal optical-comb microscopy (Patent preparation)
- •Discrete Fourier transform infrared spectroscopy (CLEO)