24/February/2015 徳大ERATOミーティング

医学・生物学応用を中心とした 線形/非線形ラマン散乱分光法

南川丈夫

京都府立医科大学 医学研究科 細胞分子機能病理学

Contact: tminami@koto.kpu-m.ac.jp

自己紹介

1983年 茨城県ひたちなか市(旧 勝田市) 生まれ

2005年 茨城高専 電子制御工学科 卒業 (高専 長谷川研,茨城大 伊藤研,理研 大森研) 「ELID研削加工」

2004年

大阪大学 基礎工学部 機械科学コース 大阪大学 基礎工学研究科 機能創成専攻 生体工学領域 0.000

2010年 Ph.D.,学振DC,招聘研究員 @ 大阪大学 (荒木・橋本研究室) 「非線形ラマン散乱顕微鏡の開発と生体計測応用」

2011年 学振PD, 助教 @ 京府医大 (病理, 高松研究室)

「線形/非線形ラマン散乱分光法による医療応用」

2014年 客員研究員@立命館大学 「分光学的方法論による浮世絵の復元的研究」 17s / 80 slices

Home-made

CARS microscope

High speed Raman imaging

Raman spectroscopy

細胞・組織内分子の分子振動を計測(振動分光法)分子振動:分子の種類や構造を反映

Raman spectroscopy

ラマン散乱分光法で 何を見たいのか? ~ 医学・医療応用~

Our goal

Imaging method to visualize molecular information

White/Black image

Our goal

Imaging method to visualize molecular information

White/Black image

Color image!!

従来技術で 何を見ることができないのか?

MRI

×放射線被曝
×装置が大きい
×低コントラスト

× 放射線破曝
× 時间かかかる
× 装置が大きい
× 装置が大きい
× 装置が大きい
× 装置が大きい

★装置が大きい ×装置が大きい ×破壊的検査
★低コントラスト×強い磁場 ×時間がかかる

Medical applications I Peripheral nerve detection -

Introduction

<u>Nerve-sparing surgery</u> Preservation of peripheral nerves during surgery

Prostate cancer

Thyroid surgery

Introduction

Nerve-sparing surgery

Preservation of only large peripheral nerves during surgery (that can be identified by human eye or under white light imaging)

Prostate cancer

Thyroid surgery

Purpose

"In situ detection of peripheral nerves"

Purpose

"In situ detection of peripheral nerves"

Label-free observation of peripheral nerves by Raman spectroscopy

Raman spectra of peripheral nerves (Sectioned sample)

[ref] T. Minamikawa et al., Histochem Cell Biol., 139, 181 (2013).

Type of peripheral nerves

<u>有髄神経 (Myelinated nerve)</u>

Nerve fiber with myelin sheath (運動神経,感覚神経など) Schwann cell Axon Myelin sheath

Nerve fiber without myelin sheat (自律神経など)

Raman spectra of peripheral nerves (Sectioned sample)

[ref] T. Minamikawa et al., Histochem Cell Biol., 139, 181 (2013).

Raman spectra of peripheral nerves (Sectioned sample)

Raman imaging of nerves (Wistar rats) Myelinated nerve Unmyelinated nerve (Intercostal nerve) (Vagus nerve)

[ref] T. Minamikawa et al., Histochem Cell Biol., 139, 181 (2013).

Raman imaging of human periprostate

[ref] T. Minamikawa et al., Histochem Cell Biol., 139, 181 (2013).

Ex vivo imaging

Myel nerve (Sciatic nerve) Unmyel nerve (Vagus nerve)

White light

Ex vivo imaging

Myel nerve (Sciatic nerve)

White light

Raman (2700-3100 cm⁻¹)

Prediction R: Myel B: Unmyel W: Others

Unmyel nerve (Vagus nerve)

Prediction

	Myel	Unmyel	Adipose	Collagenous	Muscle
Sensitivity (%)	95.5	88.3	96.5	89.2	88.2
Specificity (%)	99.4	93.5	100	98.0	98.6

T. Minamikawa et al., (submitted),関西イノベーション総合特区→医療機器化へ

Medical applications II - Myocardial infarction -

Myocardial infarction (MI)

Death of cardiomyocytes due to prolonged ischemia

Severe heart dysfunction

Treatment of MI

Resection (SVR: Surgical ventricular restoration)

Revascularization (CABG: Coronary artery bypass grafting)

Myocardial infarction (MI)

Death of cardiomyocytes due to prolonged ischemia

Severe heart dysfunction

Treatment of MI Assessment of MI

Resection (SVR: Surgical ventricular restoration)

Revascularization (CABG: Coronary artery bypass grafting)

Development of myocardial infarction

Normal Living cardiomyocytes

Necrosis Dead cardiomyocytes

Granulation Inflammatory cells Angiogenesis etc

Fibrosis Collagen

Ischemia

Infarction!!

Development of myocardial infarction

Normal Living cardiomyocytes

Development of myocardial infarction

Normal Living cardiomyocytes

Necrosis Dead cardiomyocytes

Granulation Inflammatory cells Angiogenesis etc

Fibrosis Collagen

Ischemia

Infarction!!

Conventional methods for assessing MI

MRI

Visualization of infarcted region In vivo assessment Requires contrast agents Limits in histological analysis Requires large system

Histopathological analysis

Visualization of histology Ex vivo assessment Requires invasive biopsy Requires sectioning and staining

[ref] M. Ogawa et al. Gen. Thorac. Cardiovasc. Surg, (2007)

Myocardial infarction model

Excised at each post-ligation time

Female Wistar rat (8-wks-old)

Ligated at left anterior descending branch

N	lormal
2	days
5	days
2	l days

- : Normal myocardial tissue
- : Coagulation necrosis
- : Coagulation necrosis and granulation
- : Fibrosis

All animal experiments were conducted with the approval of and in accordance with guidelines from the Committee for Animal Research, Kyoto Prefectural University of Medicine, Japan.

[1] N.N Muranishi et al., Anal. Chem, (2014).

✓ <u>Raman spectrum</u>

Normal Necrosis Granulation Fibrosis

✓ <u>Raman spectrum</u>

Tissue types
Normal
Necrosis
Granulation
Fibrosis

✓ <u>PLS</u>

Extract featured components

Latent variables (LV)

Scores

Prediction model of tissue types

1600

LVI, LV2, LV3

1400

1200

Scores of PLS-DA

* Significant difference

[1] N.N Muranishi et al., Anal. Chem, (2014).

Prediction accuracy of PLS-DA

Raman	Histology				Result	
prediction	Normal	Necrosis	Granulation	Fibrosis	Sensitivity	Specificity
Normal	149	3	2	0	99.3	99.4
Necrosis	0	286	4	0	95.3	99.5
Granulation	1	7	482	13	96.4	96.5
Fibrosis	0	4	12	137	91.3	98.3

Raman imaging of MI using PLS-DA

Histology Necrosis

Granulation

Normal

ΗE

Raman imaging of MI using PLS-DA

Histology Necrosis

Granulation

Normal

HE

Prediction

Necrosis

Granulation

Raman imaging of human OMI

Cardiomyocytes (CM)

(FT

Fibrosis

] T. Yamamoto, T. Minamikawa et al., (in preparation).

Spontaneous Raman signal is

Pros and Cons of Raman spectroscopy

○ Label-free

Molecular selectivity via molecular vibration
 in vivo capability

X Low sensitivityX Long exposure

A nonlinear Raman spectroscopy ~Coherent anti-Stokes Raman scattering~

Molecular vibration $\Omega = \omega_1 - \omega_2$

A nonlinear Raman spectroscopy ~Coherent anti-Stokes Raman scattering~

Towards better molecular imaging in biology and medicine

✓ 速く撮りたい!

✓ 分子の選択性を高めたい!

√ 分子分布以外の分子情報を得たい!

顕微ラマン散乱分光法+非線形光学 **非線形顕微ラマン散乱分光法** (CARS: Coherent anti-Stokes Raman scattering)

Multi-focus CARS microscope

A nonlinear Raman spectroscopy ~Coherent anti-Stokes Raman scattering~

Multi-focus CARS microscope

Multi-focus CARS microscope

[ref] H. Cahyadi, J. Biomed. Opt. 18, 96009 (2013), T. Minamikawa et al., Opt. Express, 17, 9526 (2009)

Membrane disruption and response 2850 cm⁻¹ (Lipids)

Before

After 1 s

After

脂質:多い!

アブレーションに

後に修復

よる膜破壊

信号強

0.0 s

Laser ablation

Laser intensity: Pulse duration: Exposure time: 63.9 mW @ 709 nm 5 ps 0.1 s

[ref] T. Minamikawa et al., J. Biomed. Opt., 16, 021111 (2011)

Towards better molecular imaging in biology and medicine

✓ 速く撮りたい!

√ 分子の選択性を高めたい!

√ 分子分布以外の分子情報を得たい!

顕微ラマン散乱分光法+非線形光学 非線形顕微ラマン散乱分光法 (CARS: Coherent anti-Stokes Raman scattering)

Spectral Raman imaging

Spectral Raman imaging

1000 cm⁻¹ 1650 cm⁻¹ 2850 cm⁻¹ 2930 cm⁻¹

Spectral Raman imaging

1650 cm⁻¹ 2850 cm⁻¹

Estimation of molecular structures

Temperature / degree
Optical setup - Multiplex CARS -

Optical setup - Multiplex CARS -

Broadband CARS spectra of peripheral nerves

Broadband CARS spectra of peripheral nerves

Broadband CARS spectra of peripheral nerves

CARS spectra at CH region

Sciatic nerve (Myelinated nerve)

Vagus nerve (Unmyelinated nerve)

Adipose tissue

Connective tissue

CARS spectra at CH region

Sciatic nerve (Myelinated nerve)

Vagus nerve (Unmyelinated nerve)

Adipose tissue

Connective tissue

CARS spectra at CH region

Fast spectral CARS imaging

Fast spectral CARS imaging

✓ Fast wavelength tuning <20 ms</p>

✓ Fast wavelength switching <20 ms</p>

2100

500 ms (Expos) + 20 ms (tune)

[ref] H. Cahyadi, J. Biomed. Opt. (in press)

Towards better molecular imaging in biology and medicine

✓ 速く撮りたい!

✓ 分子の選択性を高めたい!

√ 分子分布以外の分子情報を得たい!

顕微ラマン散乱分光法+非線形光学 非線形顕微ラマン散乱分光法 (CARS: Coherent anti-Stokes Raman scattering)

Orientation measurement by light polarization

3D orientation measurement

ラマン散乱分光法の 文化財への応用 ~浮世絵の彫摺技術復元を目指して~

プロジェクトの目的

- 浮世絵
 - 江戸時代に発展した多色摺木版画であり、現在では日本を代表する伝統美術

葛飾北斎、富嶽三十六景 凱風快晴 🛛 喜多川歌麿、ポッピンを吹く女

浮世絵技法の復元による、 伝統文化の次世代への継承・新たな価値の創造

歴史的遺産であるため、破壊的分析が出来ない

ラマン散乱分光法で「分子構造・分子分布分析」が可能

カラー画像による摺り技術の推定? 竹笹堂·摺師 永井大規作

カラー画像のみでは、摺り技術の違いは明確でない

ラマン散乱分光法による摺り技術の推定

観察波数:832 cm⁻¹

竹笹堂・摺師 永井大規作

黄色色材のみで摺り → 色材が**不均一分布**

ラマン散乱分光法による色材分布観察 → 摺りの状態を高いコントラストで観察可能

ラマン散乱分光法による摺り技術の推定

紙の繊維レベルでの色材の分布を観察可能 → 摺り技術を反映?

Summary 顕微ラマン散乱分光法による 分子イメージング法

✓ 無染色・無固定に計測可能
✓ 分子選択的イメージング
✓ 分子構造の推定
✓ 分子配向解析
✓ +非線形光学
→ 高速イメージング (10 ms/image)

3000

医学・生物学を中心として 新たな計測ツール

Acknowledgement

Kyoto Prefectural Univ of Medicine Department of Pathology and Cell Regulation

Prof Tetsuro Takamatsu Dr Yoshinori Harada Dr Noriaki Koizumi Dr Nanae Nishiki-Muranishi

<u>Kyoto Prefectural Univ of Medicine</u> <u>Deptartment of Urology</u> Prof Tsuneharu Miki Dr Koji Okihara Dr Kazumi Kamoi

<u>Kyoto Prefectural Univ of Medicine</u> <u>Department of Surgery</u> <u>Division of Cardiovascular and Pediatric Cardiovascular Surgery</u> Prof Hitoshi Yaku

Contact: tminami@koto.kpu-m.ac.jp

