20150605 ERATO meeting @ Tokushima Univ



### FT-CARS with dual-comb spectroscopy - System proposal -

#### Takeo Minamikawa

Kyoto Prefectural University of Medicine Department of Pathology and Cell Regulation, Graduate School of Medical Science, JAPAN

# Purpose

 Ultra high spectral resolution
High energy mol. vib. (>1500 cm<sup>-1</sup>) realized by Fourier Transform-CARS

> Conventional >3500 cm<sup>-1</sup> w/ >1 cm<sup>-1</sup> resolution (depending on spectrometer) <1500 cm<sup>-1</sup> w/ 10<sup>-7</sup> cm<sup>-1</sup> (expected) (depending on pulse laser and dual-comb scheme)













# Setup (3 lasers)



# Setup (I laser)



# Setup (Dual-comb)



Ideguchi, et al. Nature, 2013

Ultra high spectral resolution
Low energy mol. vib. (<1500 cm<sup>-1</sup>)

# Setup (Dual-comb)



Ideguchi, et al. Nature, 2013

### The essential point





|              |                       | <i>ω</i> <sub>1</sub> / nm |      |      |                                                         |
|--------------|-----------------------|----------------------------|------|------|---------------------------------------------------------|
|              |                       | 532                        | 780  | 1064 | $\omega_1 \omega_2 \omega_3 \omega_3 \omega_3 \omega_3$ |
|              | 100 cm <sup>-1</sup>  | 535                        | 786  | 1075 |                                                         |
| Mol.<br>Vib. | 1000 cm <sup>-1</sup> | 562                        | 846  | 1191 | (a) Resonant process                                    |
|              | 3000 cm <sup>-1</sup> | 633                        | 1018 | 1563 |                                                         |
|              |                       |                            |      |      |                                                         |

 $\omega_2$  / nm

|              |                       | <i>ω</i> 1 / nm |      |      |
|--------------|-----------------------|-----------------|------|------|
|              |                       | 532             | 780  | 1064 |
| Mol.<br>Vib. | 100 cm <sup>-1</sup>  | 535             | 786  | 1075 |
|              | 1000 cm <sup>-1</sup> | 562             | 846  | 1191 |
|              | 3000 cm <sup>-1</sup> | 633             | 1018 | 1563 |



 $\omega_2$  / nm

|              |                       | <i>ω</i> 1 / nm |      |      |
|--------------|-----------------------|-----------------|------|------|
|              |                       | 532             | 780  | 1064 |
| Mol.<br>Vib. | 100 cm <sup>-1</sup>  | 535             | 786  | 1075 |
|              | 1000 cm <sup>-1</sup> | 562             | 846  | 1191 |
|              | 3000 cm <sup>-1</sup> | 633             | 1018 | 1563 |



 $\omega_2 / nm$ 

|              |                       | <i>ω</i> 1 / nm |      |                 |
|--------------|-----------------------|-----------------|------|-----------------|
|              |                       | 532             | 780  | 1064            |
|              | 100 cm <sup>-1</sup>  | 535             | 786  | 1075            |
| Mol.<br>Vib. | 1000 cm <sup>-1</sup> | 562             | 846  | 1191            |
|              | 3000 cm <sup>-1</sup> | 633             | 1018 | 1563            |
|              |                       |                 |      | $\omega_2$ / nm |

ωз ωcars ω2 ωı Ω (a) Resonant process

#### Solution

- Two lasers
- OPO, OPA
- White light continuum

# How to probe mol. vib.?



#### Probe with a single laser that modulated by mol vib.





|              |                       | Freq.  | Wavelen. | Period |
|--------------|-----------------------|--------|----------|--------|
| Mol.<br>Vib. | 100 cm <sup>-1</sup>  | 3 THz  | 100 µm   | 333 fs |
|              | 1000 cm <sup>-1</sup> | 30 THz | 10 µm    | 33 fs  |
|              | 3000 cm <sup>-1</sup> | 90 THz | 3.3 µm   | 11 fs  |





|              |                       | Freq.  | Wavelen. | Period  |
|--------------|-----------------------|--------|----------|---------|
| Mol.<br>Vib. | 100 cm <sup>-1</sup>  | 3 THz  | 100 µm   | 333 fs  |
|              | 1000 cm <sup>-1</sup> | 30 THz | 10 µm    | 33 fs   |
|              | 3000 cm <sup>-1</sup> | 90 THz | 3.3 µm   | (11 fs) |





Mol. vib 10 THz - 90 THz



#### Probe pulse

#### Obs. mol. vib.

#### Fourier transform



# Short pulse duration with 10 fs or less is required for probing 3000 cm<sup>-1</sup>

Short pulse duration with 10 fs or less is required for probing 3000 cm<sup>-1</sup>





about 700-900 nm, 10 fs



Short pulse duration with 10 fs or less is required for probing 3000 cm<sup>-1</sup>





about 700-900 nm, 10 fs



#### Ignore absolute frequency accuracy but obtain relative frequency of mol vib













For the determination of absolute frequency

Interference w/ mid-infrared light and CARS beats Interference w/ visible light beat and CARS beats  $3000 \text{ cm}^{-1} = 3.3 \text{ }\mu\text{m} = 90 \text{ THz}$ 

Probe by auto- or cross-correlation







Probe pulse













Pump Stokes



Probe pulse

pulse for modulated CARS detection

#### Dual-comb spectroscopy w/ TiS laser but SHG for excitation





10 THz - 90 THz

Observing with 0 fs laser

#### Dual-comb spectroscopy w/ TiS laser but SHG for excitation



Limit: <1500 cm<sup>-1</sup>





# Summary



Solution I: Two lasers (OPO and femtosource) Solution 2: Beats of two vibrations Solution 3: Detection from modulated CARS Solution 4: Dual-comb w/ Fund. and SHG