Simultaneous measurement of thickness and drying process of paint film by terahertz electromagnetic pulse

T. Yasuda, T. Yasui, T. Araki, and T. Iwata

Grad. Sch. of Engg. Sci., Osaka Univ.

Faculty of Engg., Univ. of Tokushima
Quality control of painting film

Painting thickness
Painting quality
(drying process, paint-off)
In-process monitoring

In-process monitoring of paint film using THz electromagnetic pulse

Conventional methods can not meet all the requirements!

Painting film

○ Visual effect
○ Protection
(Rust prevention, Water proof)

Multi-layer paint

Substrate

Paint

Background
Quality control of painting film

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Conventional method (contact-type)</th>
<th>THz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Painting thickness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-contact, Remote</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Dried / Wet</td>
<td>Δ (only dried)</td>
<td></td>
</tr>
<tr>
<td>Single- / Multi-layer</td>
<td>Δ (only single)</td>
<td></td>
</tr>
<tr>
<td>Thickness distribution</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Metal / Non-metal substrate</td>
<td>Δ (only metal)</td>
<td></td>
</tr>
<tr>
<td>Precision = ±0.5 μm</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Painting quality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paint-off</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>Drying process</td>
<td>×</td>
<td></td>
</tr>
</tbody>
</table>

Present talk
Principle

THz pulse

(1) Painting Film \(n_g \)

(2) Substrate

Time delay \(\Delta t \)

\[\Delta t = \frac{n_g d}{c} \]

Electric field

if \(n_g \) is known

d can be determined by \(\Delta t \)
Experimental setup

Modelocked-Ti:Sapphire laser
(100fs, 1W, 80MHz, 800nm)

Basic performance

Pulse duration : 0.8ps
Spatial resolution : 1.7mm
SNR : 100
1 delay scan : 1sec
(1) Painting thickness measurement
Relationship between painting thickness and optical thickness

- **White enamel** (alkyd resin, pigment, paint thinner)
- **Black acryl** (acryl resin, pigment, nitrate, paint thinner)

![Graph showing the relationship between painting thickness and optical thickness for white enamel and black acryl.]

- **OT = 2.59d** (White enamel)
- **OT = 1.66d** (Black acryl)

Group refractive index n_g

- **White enamel**: 2.59
- **Black acryl**: 1.66

Thickness measurement

- **Precision**: 5 µm
- **Resolution**: 80 µm

Insufficient!
Improvement of thickness resolution

~ Separation of convoluted echo pulse based on two-parameter fitting ~

Signal $E_{\text{sig}}(t) = E_{\text{ref}}(t) + T E_{\text{ref}}(t + \Delta t)$

Δt: time delay
T: transmittance

Parameter fitting to $E_{\text{sig}}(t)$
Measurement of thin painting film

Sample: black acryl (thickness=17µm)

Green: fitting signal
Red: measurement signal

Blue: Residual between measurement signal and fitting signal

Thickness = 18µm

Resolution is improved
(2) Distribution measurement of painting thickness
Thickness distribution of multi-layer painting

THz pulse echo

Sample

Black acryl: $n_g = 1.66$
White enamel: $n_g = 2.59$
Plastic plate: $n_g = 1.8$

Total measurement time = 5min

Black acryl: $238.82 \pm 33 \mu m$
White enamel: $158.4 \pm 11 \mu m$

THz imaging
Detection of paint-off area

Max paint-off thickness: 555µm
(3) Monitoring of dry process
Temporal change of wet paint film

- Paint
- Wet film
- THz pulse

![Graph showing electric field over time for before painting, end of painting, complete drying at 0min, 2min, 4min, 6min, and 8min.]
Dry-state monitoring based on delay time of pulse echo

During drying process
- $d \rightarrow$ decrease, $n_g \rightarrow$ increase
- $n_g \times d \rightarrow$ constant

Drying process $\propto t_1$
Relative thickness $\propto t_2$
Summary

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Conventional method (contact-type)</th>
<th>THz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Painting thickness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-contact, remote</td>
<td>×</td>
<td>○</td>
</tr>
<tr>
<td>Dried / wet</td>
<td>Δ (only dried)</td>
<td>○</td>
</tr>
<tr>
<td>Single- / Multi-layer</td>
<td>Δ (only single)</td>
<td>○</td>
</tr>
<tr>
<td>Painting distribution</td>
<td>×</td>
<td>○</td>
</tr>
<tr>
<td>Metal / non-metal substrate</td>
<td>Δ (only metal)</td>
<td>○</td>
</tr>
<tr>
<td>Precision = 0.5 μm</td>
<td>○</td>
<td>Δ</td>
</tr>
<tr>
<td>Painting quality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paint-off</td>
<td>×</td>
<td>○</td>
</tr>
<tr>
<td>Drying process</td>
<td>×</td>
<td>△</td>
</tr>
</tbody>
</table>

Acknowledgements

NEDO and Mazda Motor Corporation, Japan