2p-ZD-6

IC断線評価システムの空間分解能評価
Evaluation of Spatial Resolution in Laser-Thz Emission Microscope for IC Inspection
理化学研究所・飯田記念館*・松山市役所*・山本松本*・戸山和氏*
m-yarn@iken.go.jp

フォトミクロレーザーを用いたテラヘルツ電磁波放射イメージングではレーザースポットサイズ程度の空間分解能で、光経路の変形やディバイスの特性評価を行うことができる。今回、我々は本手法を半導体IC断線評価システムとして応用し、実際にオペレーターによる断線評価作業を行うことでその有用性を実証した。集積回路技術の進歩に伴い半導体ICは微細化が進められており、その内部の欠陥を評価する手法には、1μm以下の非常に高い空間分解能が求められている。本研究では、スポットサイズを20μm程度に拡大したレーザーにより、様々な電極面及びギャップ幅(2μmから30μm)を有するサンプルについてラインスキャン測定を行うことにより、システムの空間分解能の評価を行った。図(a)に、5μm精度で構造の詳細をラインスキャンしてテラヘルツ波放射特性をマッピングした結果である。放射されたテラヘルツ波放射の強度が、電極ギャップ内の電場の方向に応じて反転しており、スポットサイズ以下の電極バーンにおいても内部の電場方向に関する情報が得られていることが分かる。評価では、光学系の改良によって高空間分解能化を行った結果とシステムの現状について説明するとともに今後の課題について述べる。

2p-ZD-7

THz電磁波を用いたインプロセス塗装膜モニタリングシステムの開発（II）
Development of in-process monitoring system of paint film using THz electromagnetic wave (II)
阪大・基礎工*安田美和、安井良博、長谷川
m-ysyu@osaka-u.ac.jp, http://ismgie.ee.osaka-u.ac.jp

塗装塗料電磁波をはじめ様々な工業製品に適用されている。塗装には色彩効果などの美観及び機能面の役割があり、これらの測定を十分に果たすためには塗装品の品質が重要である。よって塗装の塗装条件や塗装結果が品質を決める。しかしこの塗装技術の先進的な形態、塗装スコープにおいての局部リモート計測、ウェット・ドライ、乾燥・冷却、塗装品質、塗装厚さなどの関連性に求められる要求を満たさない。我々はこれをその問題に、新たな技術開発、設備の必要性を高めることを目的に、コアレントな領域として、インピーダンスを測定し、その測定結果を塗装の品質評価に活用するようの考え方を持つTHz電磁波を用いた塗装膜モニタリングシステムの作成を行っている。現状では塗装の電磁波の特性と、塗装表面の電磁波の特性についてはTHzイメージングにより評価した。フィードバックで塗装の電磁波の特性を測定し、塗装の品質を高めることが可能である。これにより、塗装の品質を生産系ケミカルモニタリングシステムNEXOの平成15年度研究開発研究助成事業により行われた。

2a-ZC-1

Cs-D₅線を用いた波長安定化DBR半導体レーザーの開発
Development of wavelength stabilized DBR laser diode to the Cs-D₅ line
東大新領域、東大電気工学*、東大電気工学*、藤村英一、山下正人、森藤寛、三浦克
Grad School of Frontier Sciences, Univ.of Tokyo*、Earthquake Research Inst., Univ. of Tokyo*
Teruhito Horii, Akito Araya, Shigenori Morikawa, Norikatsu Wio, kk26141@ms.ecc.u-tokyo.ac.jp

地殻変動観測に用いるレーザー光を用いる観測計の一つに波長安定型レーザーがある。このタイプの観測計は地表近傍のノイズを避けることができる一方で、基準長を長くし、検出素子のドリフトの影響を受けやすいという欠点がある。そこでわれわれは検出器であるレーザーを観測の光源として狭スペクトルのDBR半導体レーザー(852nm)を用い、波長の安定化を導入することで安定した観測を実現する。また、安定化されたレーザーは、波長の安定化を導入することで安定した観測を実現する。また、安定化されたレーザーは、波長の安定化を導入することで安定した観測を実現する。